Pubblicato il

Il cambio di volume di aria nella siringa

Testo

Una siringa ben tappata è chiusa da uno stantuffo lubrificato e contiene 0.80mL di aria alla temperatura ambiente di 20°C. La siringa così predisposta viene introdotta in un freezer dove la temperatura è mantenuta a -18°C.

  • Quale sarà il volume dell’aria nella stringa una volta raggiunto l’equilibrio termico con il freezer?

Soluzione

Per la prima legge di Gay-Lussac, espressa per i gradi centigradi, si ha:

\( V = V_0 (1+\alpha t ) \)

In cui:

  • \( V \) è il volume del gas alla temperatura \( t \);
  • \( V_0 \) è il volume del gas alla temperatura di \( 0 ^{\circ}C \);
  • \( \alpha \) è il coefficiente di dilatazione termica del gas ideale, pari a \( \frac {1}{273.14^{\circ}C} \);
  • \( t \) è la temperatura alla quale si trova il corpo.

Ne nostro caso si vuole calcolare il volume finale \( V_f \) del gas a -18°C . Per scoprire il valore del volume del’aria a 0°C si deve ricavare la formula inversa sfruttando volume iniziale \( V_i \), il quale è pari a quello che avrebbe il gas se si trovasse alla temperatura di 20°C.

Quindi:

\( V_0 = \frac{V_i}{(1+\alpha t_i )} \)

In cui:

  • \( V_i \) è il volume iniziale del gas;
  • \( t_i \) è la temperatura iniziale alla quale si trova il corpo, cioè 20°C.

La stessa legge vale per il volume finale e quindi:

\( V_f = V_0 (1+\alpha t_f ) \)

In cui:

  • \( V_f \) è il volume finale del gas;
  • \( t_f \) è la temperatura finale alla quale si trova il corpo, cioè -18°C.

Combinando le informazioni si può scrivere:

\( V_f = \frac{1+\alpha t_f }{1+\alpha t_i } V_i \rightarrow \)

\( V_f = \frac{1+\frac {1}{273.14^{\circ}C} \cdot (-18^{\circ}C) }{1+\frac {1}{273.14^{\circ}C} \cdot (20^{\circ}C)} 0.80mL \approx 0.70mL \)

Quindi il volume dell’aria nella stringa una volta raggiunto l’equilibrio termico con il freezer è di 0.70mL circa.