Esercizio di calcolo integrale non immediato

Testo

Si voglia svolgere il seguente integrale:

\int \frac{1}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}

Soluzione

Come primo passaggio si può riscrivere come segue:

\arcsin x-\int \sqrt{1-x^{2}}

Sfruttando l’integrazione per parti sul secondo addendo si ha:

\arcsin x-\left[x \sqrt{1-x^{2}}-\int-\frac{x^{2}}{\sqrt{1-x^{2}}}\right]=

\arcsin x-\left[x \sqrt{1-x^{2}}-\int \frac{-x^{2}+(1-1)}{\sqrt{1-x^{2}}}\right]=

\arcsin x-\left[x \sqrt{1-x^{2}}-\int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}}\right]=

\arcsin x-\left[x \sqrt{1-x^{2}}-\left(\int \frac{1-x^{2}}{\sqrt{1-x^{2}}}-\int \frac{1}{\sqrt{1-x^{2}}}\right)\right]=

\arcsin x-\left[x \sqrt{1-x^{2}}-\left(\int \frac{1-x^{2}}{\sqrt{1-x^{2}}} \cdot \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}}-\int \frac{1}{\sqrt{1-x^{2}}}\right)\right]=

\arcsin x-\left[x \sqrt{1-x^{2}}-\int \sqrt{1-x^{2}}+\int \frac{1}{\sqrt{1-x^{2}}}\right]=

Per la quantità tra parentesi quadre si nota che:

\int \sqrt{1-x^{2}}=x \sqrt{1-x^{2}}-\int \sqrt{1-x^{2}}+\int \frac{1}{\sqrt{1-x^{2}}}

Quindi:

2 \int \sqrt{1-x^{2}}=x \sqrt{1-x^{2}}+\int \frac{1}{\sqrt{1-x^{2}}}

Ovvero:

\int \sqrt{1-x^{2}}=\frac{x \sqrt{1-x^{2}}}{2}+\frac{\arcsin x}{2}

Quindi tutta la quantità tra parentesi quadre può essere sostituita con quella appena calcolata:

\arcsin x-\left[\frac{x \sqrt{1-x^{2}}}{2}+\frac{\arcsin x}{2}\right]+c

Il termine costante  definisce le altre primitive.

Al finale, sommando, si ha che:

\int \frac{1}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}=\frac{\arcsin x}{2}-\frac{x \sqrt{1-x^{2}}}{2}+c

DOCUMENTO MODIFICABILE CON I CONTENUTI DEL POST

Se vuoi il documento word che contiene tutto quello che è presente in questo articolo, già pronto e modificabile, puoi ottenerlo a soli 2 euro.

€2,00

Autore: Andrea

PhD student | Biomedical Engineer | Telemedicine | Telerehabilitation | Investor

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...