Categorie
geometria analitica Matematica Senza categoria

Come risolvere esercizio n. 34 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes In questo esempio di esercizio verrà mostrato come si determina il valore del parametro k per ottenere l’equazione del fascio di una retta nelle seguenti condizioni :passante per l’origine; parallela ad un’altra retta e perpendicolare ad un’altra.

Reading Time: 2 minutes

L’esercizio è presente anche nel seguente libro

  • esercizio n. 34 pag. 215 (Matematica.rosso 3 con tutor)

1 Testo

Determina per quale valore di k si ottiene una retta del fascio di equazione

\( kx+\left(1-2k\right)y+3+k=0\)

  1. passante per l’origine;
  2. parallela alla retta;
  3. perpendicolare alla retta

2 Prerequisiti

Per capire e risolvere l’esercizio è necessario conoscere:

  • l’equazione della retta (implicita ed esplicita)
  • come calcolare il coefficiente angolare della retta
  • come calcolare il valore di quota della retta
  • il concetto di fascio di rette proprio e improprio
  • come ricavare il coefficiente angolare di una retta parallela o perpendicolare a un’altra retta

3 Soluzione

3.1 Punto 1

Determiniamo l’equazione della retta del fascio passante per l’origine.

\( kx+\left(1-2k\right)y+3+k=0\)

Sostituiamo le coordinate dell’origine nell’equazione del fascio:

\( 0x +(1-2k)0+3+k=0 \)

\(0+0+3+k=0 \)

\(3+k=0 \)

\( k=-3 \)

Il valore di k per cui si ottiene l’equazione della retta del fascio passante per l’origine è \( -3 \).

3.2 Punto 2

Determiniamo l’equazione della retta del fascio parallela alla retta \( r: x=5 \).

Il coefficiente angolare della retta di equazione \( x = 5 \) è \( \infty \) e rappresenta una retta verticale. In questo caso non possiamo porre il coefficiente angolare uguale a \( \infty \), ma doppiamo porre uguale a \( 0\) il coefficiente della y nel fascio:

\( 1-2k=0 \)

da cui

\( -2k=-1 \)

quindi

\( k=\frac{1}{2} \)

Il valore di k per cui si ottiene l’equazione della retta del fascio parallela alla retta r è \( \frac{1}{2} \).

3.3 Punto 3

Determiniamo l’equazione della retta del fascio perpendicolare  alla retta \( s:x+y=5 \).

Iniziamo calcolando il coefficiente angolare della retta s:

\( m_s =-\frac{a}{b}=-3 \)

Calcoliamo il coefficiente angolare del fascio è:

\(m_f=-\frac{a}{b}=-\frac{k}{1-2k} \)

Dovendo determinare  una retta perpendicolare deve essere che:

\(m_f=-\frac{1}{m_s} =-\frac{1}{-3}=\frac{1}{3} \)

cioè:

\(-\frac{k}{1-2k}=\frac{1}{3} \)

\(-3k=1-2k \)

\(-3k+2k=1 \)

\(-k=1\)

\(k=-1\)

Il valore di k per cui si ottiene l’equazione della retta del fascio perpendicolare alla retta s è \( -1 \).

Figura 1. Rappresentazione delle rette del fascio , nelle condizioni indicate dall’esercizio.

Di cosa hai bisogno? Faccelo sapere, presto!