Categorie
Esercizi svolti Geometria piana Matematica

Come risolvere l’esercizio n.28 pag. G55 Matematica multimediale.blu 1

Reading Time: < 1 minute In questo esempio di esercizio verrà mostrato come dimostrare la congruenza di due triangoli, dati due segmenti (AB e CD) e il loro punto medio (M) .

Reading Time: < 1 minute

L’esercizio è presente anche nei seguenti libri:

  • n.25 pag. G48 Matematica multimediale.verde 1
  • n.25 pag. G44 Matematica multimediale.bianco 1
  • n.28  pag.G49 Matematica multimediale.azzurro 1

1 Testo

Traccia due segmenti AB e CD che si intersecano nel punto M, che è il punto medio di entrambi. Dimostra che i triangoli AMC e BMD sono congruenti.

2 Prerequisiti

Per rispondere al quesito bisogna sapere:

  • il concetto di congruenza;
  • il primo criterio di congruenza;
  • il concetto di punto medio;
  • la distinzione tra ipotesi, dimostrazione e tesi.

3 Soluzione

3.1 Ipotesi e tesi

Ipotesi
\( AM\cong MB \)
\(CM\cong MD\)
Tesi
\(AMC\cong BMD \)

Di seguito viene mostrato graficamente il caso di cui è necessario fornire dimostrazione.

Figura 1. Illustrazione grafica del problema

3.2 Dimostrazione

Consideriamo i triangoli \(AMC\) e \(MBD\).

Essi hanno:

  • \(AM\cong MB\) per ipotesi
  • \(CM\cong MD\) per ipotesi
  • \(A\hat{M}C\cong B\hat{M}D\) perchè angoli opposti al vertice M

Dunque i due triangoli, avendo due lati e l’angolo tra essi compreso ordinatamente congruenti, sono congruenti, per il primo criterio di congruenza.

Quindi:

\(AMC\cong BMD \).

Come volevasi dimostrare.