Pubblicato il

Come usare le formule per i problemi sui fluidi (fisica): pressione, torchio idraulico e legge di Stevino

Ogni argomento viene suddiviso in sottoparagrafi e per ogni legge o definizione verranno mostrate formula e formule inverse.

1 Pressione

La pressione è definita come la forza applicata per unità di superficie. L’unità di misura della pressione è il Pascal, il quale equivale alla forza di un Newton applicata su un metro quadro di superficie.

La pressione è definita in generale come segue:

\( P = \frac{F}{S}\)

In cui:

  • \( P \) è la pressione esercitata;
  • \( F \) è la forza che agisce sulla superficie;
  • \( S \) è la superficie su cui agisce la forza.

Dalla definizione si può capire come la pressione sia inversamente proporzionale alla superficie. Ciò significa che, a parità di forza, più aumenta la superficie e più la pressione esercitata dalla forza diminuisce. Viceversa la pressione è direttamente proporzionale alla forza, il che significa che, a parità di superficie, quanto più aumenta la forza tanto più aumenta la pressione esercitata sulla superficie dalla forza.

Nella tabella seguente vengono esaminate tre differenti casistiche Associata la risoluzione dei problemi in cui è coinvolta la formula che definisce la pressione.

Tabella 1 Pressione e formule inverse

2 Torchio idraulico

Il torchio idraulico mette in relazione le forze esercitate su due superfici di grandezza differente quando collegate da vasi comunicanti tramite un liquido, che tipicamente è l’acqua.

La formula che correla forze e superfici nel torchio idraulico è la seguente:

\( \frac{F_1}{S_1}= \frac{F_2}{S_2}\)

In cui:

  • \( F_1\) è la forza generata sulla superficie uno;
  • \( S_1\) è la superficie uno;
  • \( F_2\) è la forza generata sulla superficie due;
  • \( S_2\) è la superficie due.

Come si può notare la legge del torchio idraulico è semplicemente una proporzione, che mette in relazione forze e superfici: la forza numero 1 sta alla superficie numero 1 come la forza numero 2 sta alla superficie numero 2.

Figura 1 Rappresentazione schematica Del Torchio idraulico

Le superfici possono avere le forme più disparate, alcuni esempi sono: cerchio, quadrato, rettangolo e così via. Per il calcolo della superficie si procede seguendo le regole dettate dalla geometria piana. Quindi, se per esempio la superficie è un cerchio allora basterà utilizzare la formula della superficie del cerchio per la quantificazione del valore della superficie. Nella tabella seguente vengono mostrate tutte le varianti della legge del torchio idraulico. il lettore tenga in considerazione che \( r_1 \) e \( r_2 \) indicano i raggi delle superfici \(S_1 \) e \( S_2 \) rispettivamente.

Tabella 2 Legge del torchio idraulico e varianti

3 Legge di Stevino

La legge di Stevino definisce una relazione che ci dice qual è lo stato di pressione a una certa altezza dalla superficie di un qualsiasi liquido.

In generale la legge di Stevino ci dice che:

\( P = \rho g h \)

In cui:

  • \( P \) è la pressione a una certa altezza dalla superficie del liquido;
  • \( \rho \) è la densità del liquido;
  • \( g \) è l’accelerazione gravitazionale;
  • \( h \) è l’altezza, dalla superficie del liquido, alla quale la pressione viene calcolata. Forse infatti sarebbe più appropriato parlare di h come profondità.

Come si può notare la legge di Stevino è semplicemente un prodotto tra tre grandezze fisiche. Nella tabella di seguito viene mostrata la legge di Stevino e tutte le sue varianti.

Tabella 3 Legge di Stevino e varianti