Pubblicato il

Come trovare altezza relativa e equazione della retta parallela al lato di un triangolo

Reading Time: 2 minutes

Testo

Dato il triangolo di vertici A(-2; 4), B(4; 3) e C(2; -2), determina:

a. l’equazione dell’altezza relativa al lato AC;

b. l’equazione della retta passante per A e parallela al lato BC;

Soluzione

Punto a.

Per trovare l’altezza relativa ad AC, sappiamo che è una retta perpendicolare ad AC e passante per il vertice opposto B.

Troviamo inizialmente il coefficiente angolare della retta AC:

\( m_{AC}={\frac{y_{C}- y_{A}}{ x_{C}-x_{A} }}={\frac{-2-4}{2-(-2)}}= {\frac{-3}{2}} \)

Sapendo che la condizione di perpendicolarità tra due rette, otteniamo poi il coefficente angolare della retta relativa AC:

\( m_{BH}={\frac{-1}{ m_{AC}}}={\frac{2}{3}} \)

Data la definizione della retta in forma esplicita \( y=mx+q \), sostituendo il coefficiente  \( m_{BH} \) e imponendo il passaggio per il vertice B(4,3):

\( 3= {\frac{2}{3}}*4+q \qquad q=1 \)

\( y= {\frac{2}{3}}x+{\frac{1}{3}} \)

In forma implicita diventa dunque:

\( 2x+3y+1=0 \)

Punto b.

Qualunque retta parallela al segmento BC avrà il suo stesso coefficiente angolare. Andando dunque a calcolarlo abbiamo:

\( m_{BC}={\frac{y_{C}- y_{B}}{ x_{C}-x_{B} }}={\frac{-2-3}{2-4}}= {\frac{5}{2}} \)

Data la definizione della retta in forma esplicita  \( y=mx+q \), sostituendo il coefficiente  \( m_{BC} \) e imponendo il passaggio per il punto A(-2; 4):

\( 4= {\frac{5}{2}}*(-2)+q \qquad q=9 \)

\( y= {\frac{5}{2}}x+9 \)

In forma implicita diventa dunque:

\( 5x-2y+18=0 \)

Rappresentazione delle rette ricavate con il triangolo discusso nel problema