Pubblicato il

Collisionatore (acceleratore particelle) Esercizio Svolto Traccia Maturità

Reading Time: < 1 minute

Un collisionatore è un particolare acceleratore di particelle in cui le particelle accelerate in versi opposti lungo traiettorie circolari vengono fatte collidere frontalmente con velocità uguali e opposte. Supponiamo di considerare un elettrone con velocità 𝑣 = 𝑥𝑐 (𝑐 indica la velocità della luce nel vuoto, con – 1<x<1) nel sistema di riferimento del laboratorio, che collide frontalmente con un positrone (particella che ha la stessa massa dell’elettrone ma carica opposta) che ha velocità uguale e opposta a quella dell’elettrone.

Clicca sul bottone per andare alla soluzione

Pubblicato il

Vertice di una parabola. Come trovare una parabola con vertice V(2,3)

Reading Time: < 1 minute

Testo

Illustra il concetto di vertice di una parabola. Fai un esempio di parabola con Vertice in V(2,3).

Soluzione

Pubblicato il

Come risolvere esercizio n.186 pag.643 (MATEMATICA VERDE 3G)

Reading Time: < 1 minute

Testo

In un parallelogramma due lati consecutivi misurano rispettivamente 4 e 20 e l’angolo fra essi compreso è alfa = arcsin (4/5). Calcola la misura dell’area è delle diagonali.

Soluzione

Nel video potrai trovare la soluzione dell’esercizio. Se qualcosa non è chiaro o hai bisogno di ulteriori spiegazioni non esitare a contattarci!

Pubblicato il

Quante particelle sono contenute in 2.2 moli di Argon?

Reading Time: < 1 minute

Per scoprire quante particelle ci sono in 2.2 moli di Argon bisogna moltiplicare le moli per il numero di Avogadro:

\( 2.2 mol \cdot 6.022 \cdot 10^{23} \cdot \frac{particelle}{mol} \\ \approx 1.324 \cdot 10^{24} paricelle\)

Quindi il numero di particelle in 2.2 moli di Argon è di circa:

\( 1.324 \cdot 10^{24} \) .

Pubblicato il

Come dimostrare, in 5 mosse, la perpendicolarità tra tangente e raggio.

Reading Time: 2 minutes

1. Testo

Dimostra, con l’utilizzo delle derivate, che la tangente a una circonferenza è perpendicolare al raggio nel punto di tangenza.  

2. Prerequisiti

Per poter affrontare al meglio questa tipologia di esercizio dovrai conoscere:

  • il concetto e la definizione di derivata
  • l’equazione della circonferenza
  • come ricavare le formule inverse

3. Soluzione

Primo step

Consideriamo l’equazione generica di una circonferenza di centro C(0,0) e raggio r : 

\(x^{2}+y^{2}=r^{2}\)

Secondo step

Ricaviamo la y in modo da poter esplicitare le coordinate di un punto sulla circonferenza: 

\( y=± \sqrt{r^2 − x^2 } \) 

Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo a seguire è stata scelta, per comodità, la semicirconferenza superiore.

Terzo step

Consideriamo un punto generico P sulla circonferenza, questo avrà coordinate: 

\( P(x_P, \sqrt{r^2 − x_P^2 }) \)

Figura 1. Rappresentazione sul piano cartesiano del problema proposto. Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo è stata scelta la semicirconferenza superiore.
Quarto step

Calcoliamo ora il coefficiente angolare del raggio della circonferenza congiungente il centro O con il punto P: 

\( m_{OP} =\frac{\Delta {y}}{\Delta {x}} =\frac{{y_P}-y_O}{{x_P}-x_O}=\frac{\sqrt{r^2- x_P^2}}{x_P}\)

Quinto e ultimo step

Ricordiamo il significato di derivata di una funzione in un punto.

Il significato geometrico di derivata in un punto è il coefficiente angolare della retta tangente al grafico della funzione in quel punto.  

Svolgiamo quindi la derivata della funzione rappresentante la circonferenza  e calcoliamola nel punto \( P(x_P, \sqrt{r^2 − x_P^2 }) \) per dimostrare che la retta tangente alla circonferenza in quel punto è perpendicolare al raggio.  

\(\frac{d f(x)}{dx}=\frac{d \left(\sqrt{r^{2}-x^{2}}\right)}{d x}=\frac{d\left(r^{2}-x^{2}\right)^{\frac{1}{2}}}{d x}= \)

\(\frac{1}{2}(-2 x)\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}=\frac{-x}{\sqrt{r^{2}-x^{2}}}\)

Calcoliamo ora la derivata nel punto di ascissa \( x = x_P\) 

\( m_{perp-OP} =\frac{d {f (x_{P})}}{d {x}}=\frac{- x_{P}^{2}}{\sqrt{r^{2}-x_{P}^{2}}}\ \)

Dal confronto tra  

\( m_{perp-OP}= – \frac{x_{OP}}{\sqrt{r^{2}-x_P^2}}\)

e  

\( m_{OP}= \frac{\sqrt{r^{2}-x_P^2}}{x_{OP}}\)

si evidenzia come un valore sia esattamente l’antireciproco dell’altro.  

Questo corrisponde con la definizione di coefficienti angolari appartenenti a rette parallele, come volevasi dimostrare.  

smiling woman wearing black sweater

Hai bisogno di lezioni private?

Se hai bisogno di lezioni private oppure vuoi semplicemente richiedere la risoluzione di un esercizio contattaci tramite WhatsApp oppure scrivici una mail a orangejellybeanojb@gmail.com. Che aspetti? AFFRETTATI!