Pubblicato il

Come trovare l’altezza relativa allo spigolo della base di una piramide retta

Testo

Una piramide retta ha per base un triangolo equilatero di lato 6cm e di altezza congruente allo spigolo di base. Calcola la distanza dal centro della base da uno degli spigoli laterali.

Figura 1: Piramide dell’esercizio

Soluzione

Dal testo si evince che  gli spigoli di base \(AC=AB=BC=6cm\), e che l’altezza della piramide \(VO\), essendo congruente ad essi, è anch’essa 6cm.

Essendo il triangolo \(ABC\) alla base equilatero, possiamo facilmente calcolare la sua altezza:

\(CL=AB*(\frac{\sqrt{3}}{2})= 6* (\frac{\sqrt{3}}{2})=3{\sqrt{3}}cm\)

Adesso possiamo calcolare il raggio della circonferenza che circoscrive il triangolo equilatero alla base della piramide:

\(OL=(\frac{2*Area_{ABC}}{2*Perimetro_{ABC}})=(\frac{2*CL*AB}{2*3AB})=(\frac{2*3{\sqrt{3}}*6}{2*3*6})={\sqrt{3}}cm\)

Adesso possiamo calcolare \(AO\) che rappresenta l’ipotenusa del triangolo definito dai vertici \(AOL\). Usando il teorema di Pitagora:

\(AO={\sqrt{(\sqrt{3})^2+(3)^2}}={\sqrt{3+9}}+{\sqrt{12}}=2(\sqrt{3})cm\)

Si può notare adesso che il segmento \(OH\) che definisce la distanza tra il centro della base e lo spigolo laterale \(AB\) è l’altezza relativa all’ipotenusa del triangolo rettangolo definito dai vertici \(AVO\), conoscendo i suoi cateti definiti da \(AO\) e \(VO\) possiamo calcolarci l’ipotenusa \(AV\):

\(AV={\sqrt{(2\sqrt{3})^2+(6)^2}}={\sqrt{12+36}}={\sqrt{48}}=4(\sqrt{3})cm\)

Possiamo finalmente calcolare l’altezza relativa all’ipotenusa \(AV\) che corrisponde anche allo spigolo laterale della nostra piramide:

\(OH=(\frac{AO*VO}{AV})=(\frac{2(\sqrt{3})*6}{4(\sqrt{3})})=3cm\)

Pubblicato il

Collisionatore (acceleratore particelle) Esercizio Svolto Traccia Maturità

Un collisionatore è un particolare acceleratore di particelle in cui le particelle accelerate in versi opposti lungo traiettorie circolari vengono fatte collidere frontalmente con velocità uguali e opposte. Supponiamo di considerare un elettrone con velocità 𝑣 = 𝑥𝑐 (𝑐 indica la velocità della luce nel vuoto, con – 1<x<1) nel sistema di riferimento del laboratorio, che collide frontalmente con un positrone (particella che ha la stessa massa dell’elettrone ma carica opposta) che ha velocità uguale e opposta a quella dell’elettrone.

Clicca sul bottone per andare alla soluzione

Pubblicato il

Soluzione esercizio 138-Pag 834 Matematica Azzurro seconda edizione

Testo

Figura 1: Triangolo esercizio

Soluzione

Calcoliamo inizialmente l’angolo \(\hat{C}\):

\(\hat{C}={arcsin{\frac{3}{5}}}{\approx {\frac{\pi}{5}}} \)

Conoscendo gli angoli \(\hat{A}\) e \(\hat{C}\) andiamo dunque a calcolare l’angolo \(\hat{B}\):

\(\hat{B}={\pi-{\frac{\pi}{3}}-{\frac{\pi}{5}}}={\frac{7\pi}{15}} \)

Conoscendo i lati AB, BC e l’angolo \(\hat{B}\) tra essi compreso applicando la formula dell’area di un triangolo qualunque abbiamo:

\(Area_{ABC}={\frac{{AB}\cdot{BC}}{2}\cdot{\sin{{\hat{B}}}}}={\frac{{20}\cdot{8\sqrt{3}}\cdot{\sin{\frac{7\pi}{5}}}}{2}}=137.56 {\approx24(\sqrt{3}+4)} \)

Pubblicato il

Forza elastica e legge di Hooke- Soluzione esercizio Amaldi blu Pag 102 n°12

Testo

La spinta di un motore di un jet è di circa 7,5×104. Immaginando di misurarla con un dinamometro si potrebbe determinare un allungamento l. Misurando la forza dei motori di un’astronave, l’allungamento sarebbe 400 volte l.

Quale forza produce il motore dell’astronave?

Soluzione

Un dinamometro è uno strumento composto da una molla, utile per misurare una determinata forza. Applicando una forza F si avrà un allungamento l della molla linearmente proporzionale alla forza applicata come descritto dalla legge di Hooke:

\(F={{k}\cdot{l}}\)

Dove F è la forza applicata, k la costante elastica intrinseca della molla ed l l’allungamento. Per il motore del jet abbiamo quindi:

\(F_{jet}={{k}{l}}={{7.5}\cdot{10^{4}}}N\)

Per il motore dell’astronave sapendo che l è 400 volte l’allungamento del motore a jet abbiamo, assumendo di usare lo stesso dinamometro e dunque la stessa costante elastica k:

\(F_{astronave}={{k}\cdot{400l}}={{400}\cdot{7.5}\cdot{10^{4}}}N={{3}\cdot{10^{7}}}N \)

Pubblicato il

Come trovare altezza relativa e equazione della retta parallela al lato di un triangolo

Testo

Dato il triangolo di vertici A(-2; 4), B(4; 3) e C(2; -2), determina:

a. l’equazione dell’altezza relativa al lato AC;

b. l’equazione della retta passante per A e parallela al lato BC;

Soluzione

Punto a.

Per trovare l’altezza relativa ad AC, sappiamo che è una retta perpendicolare ad AC e passante per il vertice opposto B.

Troviamo inizialmente il coefficiente angolare della retta AC:

\( m_{AC}={\frac{y_{C}- y_{A}}{ x_{C}-x_{A} }}={\frac{-2-4}{2-(-2)}}= {\frac{-3}{2}} \)

Sapendo che la condizione di perpendicolarità tra due rette, otteniamo poi il coefficente angolare della retta relativa AC:

\( m_{BH}={\frac{-1}{ m_{AC}}}={\frac{2}{3}} \)

Data la definizione della retta in forma esplicita \( y=mx+q \), sostituendo il coefficiente  \( m_{BH} \) e imponendo il passaggio per il vertice B(4,3):

\( 3= {\frac{2}{3}}*4+q \qquad q=1 \)

\( y= {\frac{2}{3}}x+{\frac{1}{3}} \)

In forma implicita diventa dunque:

\( 2x+3y+1=0 \)

Punto b.

Qualunque retta parallela al segmento BC avrà il suo stesso coefficiente angolare. Andando dunque a calcolarlo abbiamo:

\( m_{BC}={\frac{y_{C}- y_{B}}{ x_{C}-x_{B} }}={\frac{-2-3}{2-4}}= {\frac{5}{2}} \)

Data la definizione della retta in forma esplicita  \( y=mx+q \), sostituendo il coefficiente  \( m_{BC} \) e imponendo il passaggio per il punto A(-2; 4):

\( 4= {\frac{5}{2}}*(-2)+q \qquad q=9 \)

\( y= {\frac{5}{2}}x+9 \)

In forma implicita diventa dunque:

\( 5x-2y+18=0 \)

Rappresentazione delle rette ricavate con il triangolo discusso nel problema
Pubblicato il

Come calcolare il perimetro e le mediane e di un triangolo isoscele data la base e l’area

Testo

Determina il perimetro e le mediane di un triangolo isoscele, di area 48a2, sapendo che la sua base ha una lunghezza 16a.

Soluzione

Figura 1: Triangolo rettangolo con le mediane

Possiamo determinare inizialmente la mediana AA’ che parte dal vertice A. Come si può notare in figura 1, la mediana AA’ corrisponde anche all’altezza del nostro triangolo; e avendo noti rispettivamente base e area, si ottiene che:

Per trovare i lati obliqui del triangolo isoscele, possiamo dividerlo in due triangoli rettangoli equivalenti. I cateti son definiti da BC/2=CA’=BA’ e AA’, e le ipotenuse dai segmenti AC e AB. Perciò applicando il teorema di Pitagora:

Il perimetro sarà dunque calcolato come:

mentre le due mediane BB’ e CC’ sono equivalenti e saranno date da:

Se desideri scaricare il problema e la risoluzione in formato pdf puoi farlo cliccando nel pulsante sottostante

Pubblicato il

Come determinare il raggio atomico dell’atomo d’idrogeno conoscendo la sua energia di ionizzazione

Testo

Determina il raggio atomico dell’atomo d’idrogeno sapendo che la sua energia di ionizzazione, cioè la minima energia richiesta per allontanare da esso un elettrone, è di 13,6 eV.

Prerequisiti


Per risolvere questo esercizio dovrai conoscere:

  1. I concetti di energia potenziale ed energia cinetica;
  2. La seconda legge della dinamica;
  3. Come invertire le formule;
  4. La carica dell’elettrone e del protone;
  5. La costante di Coulomb;
  6. Il concetto di energia totale
  7. La teoria associata al moto circolare uniforme
  8. Come convertire gli elettronVolt (eV) in Joule (J).

Soluzione

L’elettrone dell’atomo di idrogeno ruota intorno al nucleo mantenendo un’energia potenziale data dalla formula:
Si osservi che…

Pubblicato il

Soluzione esercizio numero 13 pag 997 – L’Amaldi per i licei scientifici.blu

Testo

Una bobina è composta da 35 spire, di raggio 2,5 cm, ed è collegata a un circuito che non contiene un generatore. Avvicinando e allontanando una calamita, il campo magnetico medio sulla superficie della bobina varia di 5,8 mT. La calamita viene spostata vicino e poi lontano dalla bobina quattro volte al secondo.

Calcola il modulo della forza elettromotrice media indotta nel circuito da tale variazione di flusso.

Prerequisiti

Per risolvere questo problema lo studente deve conoscere:

  • il concetto del flusso di campo magnetico;
  • le forumle relative al flusso di campo magnetico;
  • il concetto di vettore di superficie;
  • Il concetto di vettore di campo magnetico;
  • la differenze tra campo magnetico e flusso di campo magnetico.

Soluzione

Scarica il documento per ottenere la soluzione di questo esercizio. Se hai bisogno di assistenza puoi contattarci in qualsiasi momento.

Pubblicato il

Soluzione esercizio numero 137 pag.834 tratto dal libro Matematica.azzurro 4 con Tutor

Testo

Nel seguente esercizio determina gli elementi richiesti utilizzando i dati forniti dalle figure.

Sfruttando le conoscenze sulla trigonometria bisogna cercare di ricavare le aree richieste.

Soluzione

Pubblicato il

Esercizio numero 12 pag. 997 (L’Amaldi per i licei scientifici.blu)

1 Testo

Una spira circolare di raggio 2,5 cm è immersa in un campo magnetico di modulo 0,15T. All’inizio è posta perpendicolarmente alle linee di campo. Successivamente subisce una rotazione di 30°. La rotazione avviene in 10 secondi.

  • Calcola la variazione del flusso del campo magnetico.
  • Calcola la forza elettromagnetica indotta
Vettore di campo magnetico e di superficie, dalla posizione iniziale a quella finale, come dai dati del problema. L’angolo rappresentato in rosso deve essere di 30°.

2 Prerequisiti

Per poter risolvere questo problema bisogna conoscere i seguenti concetti:

  • campo magnetico;
  • vettore superficie;
  • flusso di campo magnetico;
  • forza elettromotrice indotta.

3 Soluzione

3.1 Punto 1

Per risolvere il punto 1 dell’esercizio si deve calcolare il flusso del campo nautico finale e il flusso del campo magnetico iniziale, per poi effettuarne la differenza in modo da ricavare la variazione di flusso di campo magnetico.

Si consideri quindi… Se vuoi continuare a vedere la soluzione scarica il documento acquistandolo qui sotto.