Pubblicato il

Vertice di una parabola. Come trovare una parabola con vertice V(2,3)

Reading Time: < 1 minute

Testo

Illustra il concetto di vertice di una parabola. Fai un esempio di parabola con Vertice in V(2,3).

Soluzione

Pubblicato il

Come dimostrare, in 5 mosse, la perpendicolarità tra tangente e raggio.

Reading Time: 2 minutes

1. Testo

Dimostra, con l’utilizzo delle derivate, che la tangente a una circonferenza è perpendicolare al raggio nel punto di tangenza.  

2. Prerequisiti

Per poter affrontare al meglio questa tipologia di esercizio dovrai conoscere:

  • il concetto e la definizione di derivata
  • l’equazione della circonferenza
  • come ricavare le formule inverse

3. Soluzione

Primo step

Consideriamo l’equazione generica di una circonferenza di centro C(0,0) e raggio r : 

\(x^{2}+y^{2}=r^{2}\)

Secondo step

Ricaviamo la y in modo da poter esplicitare le coordinate di un punto sulla circonferenza: 

\( y=± \sqrt{r^2 − x^2 } \) 

Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo a seguire è stata scelta, per comodità, la semicirconferenza superiore.

Terzo step

Consideriamo un punto generico P sulla circonferenza, questo avrà coordinate: 

\( P(x_P, \sqrt{r^2 − x_P^2 }) \)

Figura 1. Rappresentazione sul piano cartesiano del problema proposto. Si ricordi che la circonferenza non è una funzione e, per tale motivo, nelle procedure di calcolo è stata scelta la semicirconferenza superiore.
Quarto step

Calcoliamo ora il coefficiente angolare del raggio della circonferenza congiungente il centro O con il punto P: 

\( m_{OP} =\frac{\Delta {y}}{\Delta {x}} =\frac{{y_P}-y_O}{{x_P}-x_O}=\frac{\sqrt{r^2- x_P^2}}{x_P}\)

Quinto e ultimo step

Ricordiamo il significato di derivata di una funzione in un punto.

Il significato geometrico di derivata in un punto è il coefficiente angolare della retta tangente al grafico della funzione in quel punto.  

Svolgiamo quindi la derivata della funzione rappresentante la circonferenza  e calcoliamola nel punto \( P(x_P, \sqrt{r^2 − x_P^2 }) \) per dimostrare che la retta tangente alla circonferenza in quel punto è perpendicolare al raggio.  

\(\frac{d f(x)}{dx}=\frac{d \left(\sqrt{r^{2}-x^{2}}\right)}{d x}=\frac{d\left(r^{2}-x^{2}\right)^{\frac{1}{2}}}{d x}= \)

\(\frac{1}{2}(-2 x)\left(r^{2}-x^{2}\right)^{-\frac{1}{2}}=\frac{-x}{\sqrt{r^{2}-x^{2}}}\)

Calcoliamo ora la derivata nel punto di ascissa \( x = x_P\) 

\( m_{perp-OP} =\frac{d {f (x_{P})}}{d {x}}=\frac{- x_{P}^{2}}{\sqrt{r^{2}-x_{P}^{2}}}\ \)

Dal confronto tra  

\( m_{perp-OP}= – \frac{x_{OP}}{\sqrt{r^{2}-x_P^2}}\)

e  

\( m_{OP}= \frac{\sqrt{r^{2}-x_P^2}}{x_{OP}}\)

si evidenzia come un valore sia esattamente l’antireciproco dell’altro.  

Questo corrisponde con la definizione di coefficienti angolari appartenenti a rette parallele, come volevasi dimostrare.  

smiling woman wearing black sweater

Hai bisogno di lezioni private?

Se hai bisogno di lezioni private oppure vuoi semplicemente richiedere la risoluzione di un esercizio contattaci tramite WhatsApp oppure scrivici una mail a orangejellybeanojb@gmail.com. Che aspetti? AFFRETTATI!

Pubblicato il

Come risolvere esercizio n. 34 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes

L’esercizio è presente anche nel seguente libro

  • esercizio n. 34 pag. 215 (Matematica.rosso 3 con tutor)

1 Testo

Determina per quale valore di k si ottiene una retta del fascio di equazione

\( kx+\left(1-2k\right)y+3+k=0\)

  1. passante per l’origine;
  2. parallela alla retta;
  3. perpendicolare alla retta

2 Prerequisiti

Per capire e risolvere l’esercizio è necessario conoscere:

  • l’equazione della retta (implicita ed esplicita)
  • come calcolare il coefficiente angolare della retta
  • come calcolare il valore di quota della retta
  • il concetto di fascio di rette proprio e improprio
  • come ricavare il coefficiente angolare di una retta parallela o perpendicolare a un’altra retta

3 Soluzione

3.1 Punto 1

Determiniamo l’equazione della retta del fascio passante per l’origine.

\( kx+\left(1-2k\right)y+3+k=0\)

Sostituiamo le coordinate dell’origine nell’equazione del fascio:

\( 0x +(1-2k)0+3+k=0 \)

\(0+0+3+k=0 \)

\(3+k=0 \)

\( k=-3 \)

Il valore di k per cui si ottiene l’equazione della retta del fascio passante per l’origine è \( -3 \).

3.2 Punto 2

Determiniamo l’equazione della retta del fascio parallela alla retta \( r: x=5 \).

Il coefficiente angolare della retta di equazione \( x = 5 \) è \( \infty \) e rappresenta una retta verticale. In questo caso non possiamo porre il coefficiente angolare uguale a \( \infty \), ma doppiamo porre uguale a \( 0\) il coefficiente della y nel fascio:

\( 1-2k=0 \)

da cui

\( -2k=-1 \)

quindi

\( k=\frac{1}{2} \)

Il valore di k per cui si ottiene l’equazione della retta del fascio parallela alla retta r è \( \frac{1}{2} \).

3.3 Punto 3

Determiniamo l’equazione della retta del fascio perpendicolare  alla retta \( s:x+y=5 \).

Iniziamo calcolando il coefficiente angolare della retta s:

\( m_s =-\frac{a}{b}=-3 \)

Calcoliamo il coefficiente angolare del fascio è:

\(m_f=-\frac{a}{b}=-\frac{k}{1-2k} \)

Dovendo determinare  una retta perpendicolare deve essere che:

\(m_f=-\frac{1}{m_s} =-\frac{1}{-3}=\frac{1}{3} \)

cioè:

\(-\frac{k}{1-2k}=\frac{1}{3} \)

\(-3k=1-2k \)

\(-3k+2k=1 \)

\(-k=1\)

\(k=-1\)

Il valore di k per cui si ottiene l’equazione della retta del fascio perpendicolare alla retta s è \( -1 \).

Figura 1. Rappresentazione delle rette del fascio , nelle condizioni indicate dall’esercizio.

Di cosa hai bisogno? Faccelo sapere, presto!

Pubblicato il

Come risolvere esercizio n.32 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes

L’esercizio è presente anche nei seguenti libri:

  • esercizio 33 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 32  pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si trova il valore del parametro m della retta r_{AB} che passa per  due punti A e B , parallela ad un’altra retta r.

Inoltre si calcola il perimetro del triangolo formato dalla retta r_{AB} e un punto C sull’asse delle ascisse.

1         Testo

Determina per quale valore del parametro \( m \) la retta passante per i punti  \( A(m+1;2) \) e \( B(1;m) \) è parallela alla retta \( y=3x+1 \)Trova poi il perimetro del triangolo ABC con C punto di intersezione tra l’asse \( x \) e la retta \( y=x+1 \).

1          Soluzione

La retta passante per AB deve essere parallela alla retta  \( r: y=3x+1
\) con \( m_r=3\).

Per la condizione di parallelismo i coefficienti angolari delle due rette
devono essere uguali:

\(
m_{AB}=m_r \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (1) \)

Determiniamo il coefficiente angolare tra i due punti:

\( m_{AB}=\frac{y_B-y_A}{x_B-x_A}=\frac{m-2}{1-m-1}=\frac{m-2}{-m}=-\frac{m-2}{m} \)

Per la (1), deve essere:

\( -\frac{m-2}{m}=3\)

da cui

\( -(m-2)=3m\)

\( -m+2-3m=0\)

\( -4m=-2\)

\( m=\frac{2}{4}=\frac{1}{2}\)

quindi

\( m= \frac{1}{2}\)

Determiniamo le coordinate dei punti A e B, sostituendo il valore di \(
m=\frac{1}{2} \):

\( (m+1;2)\rightarrow\left(\frac{1}{2}+1 ; 2\right)\rightarrow A\left(\frac{3}{2}
; 2\right)\)

e

\( B(1;m)\rightarrow B\left(1;\frac{1}{2}\right)\)

Determiniamo il punto di intersezione tra l’asse \( x \) e la retta data \(
y=x+1 \).

Risolvendo il seguente sistema:

\( \left \{ \begin{matrix} y=x+1 \\ y=0 \end{matrix} \right. \)

da cui:

\( x+1=0\rightarrow x=-1 \)

otteniamo le coordinate del punto \( C(-1,0)\).

Utilizzando la formula distanza
tra due punti:

\( d=\sqrt{(x_2-x_1 )^2+(y_2-y_1 )^2}\)

calcoliamo i lati del triangolo:

\( AB=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(\frac{1}{2}-2\right)^2}=\sqrt{\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{10}{4}}=\frac{1}{2}\sqrt{10}\)

\( BC=\sqrt{\left(-1-1\right)^2+\left(0-\frac{1}{2}\right)^2}=\sqrt{4+\frac{1}{4}}=\sqrt{\frac{17}{4}}=\frac{1}{2}\sqrt{17}\)

\( AC=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(0-2\right)^2}=\sqrt{\frac{25}{4}+4}=\sqrt{\frac{41}{4}}=\frac{1}{2}\sqrt{41}\)

Ora possiamo calcolare il perimetro del triangolo:

\( P=AB+BC+AC=\frac{1}{2}\sqrt{10}+\frac{1}{2}\sqrt{17}+\frac{1}{2}\sqrt{41}=\frac{1}{2}\left(\sqrt{10}+\sqrt{17}+\sqrt{41}\right)\)

 

Figura 1. Rappresentazione completa della situazione proposta dal problema. Vengono rappresentate le tre rette discusse in questo esercizio e il triangolo identificato dai tre punti A, B e C.
Pubblicato il

Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)

Reading Time: 3 minutes

Autore: Antonio Reno;

Revisore: Andrea Zedda

L’esercizio è presente anche nei seguenti libri:

  • esercizio 28 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 27 pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si calcola l’equazione della retta passante per l’altezza di un triangolo nel piano cartesiano ma anche come si trova la retta passante per un vertice del triangolo e parallela a un lato del triangolo stesso.

1         Testo

Dato il triangolo di vertici A(-2,4), B(4,3) e C(2,-2), determinare:

  1. l’equazione della retta passante per l’altezza relativa al lato AC;
  2. l’equazione della retta passante per A e parallela al lato BC.
Continua a leggere Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)
Pubblicato il

Come trovare l’equazione della parabola dato il vertice e un punto

Reading Time: < 1 minute

Testo

Scrivere l’equazione della parabola, con asse parallelo a quello delle ordinate, avente il vertice nel punto di coordinate \( V(1 ; 0) \) e passante per il punto \( P(2; 1) \).

Soluzione

Per prima cosa si osserva che, dovendo essere la parabola ad asse parallelo a quello delle ordinate, la sua equazione deve essere nella forma:

\( y=a x^{2}+b x+c\)

Ora si osserva che le coordinate generali del vertice della parabola sono:

\( V\left(-\frac{b}{2 a} ;-\frac{\Delta}{4 a}\right)\)

Dai dati sappiamo che il vertice ha coordinate \( V(1 ; 0)\) e dunque devono essere rispettate le seguenti condizioni:

\( \left\{\begin{matrix}-\frac{b}{2 a} =1 \\ -\frac{\Delta}{4 a} = 0 \end{matrix}\right.\)

Inoltre, essendo che la parabola passa per il punto \( P(2; 1)\) l’equazione della parabola deve essere soddisfatta quando attribuiamo a x e a y i valori del punto \( P\). Quindi:

\( 1=a(2)^{2}+b(2)+c\)

Che rappresenta la terza condizione del precedente sistema. Avendo 3 condizioni riusciamo a trovare i tre coefficienti.

Si deve dunque risolvere il seguente sistema per trovare i coefficienti della parabola:

\( \left\{\begin{matrix}-\frac{b}{2 a} = 1 \\ -\frac{\Delta}{4 a} = 0 \\ 1=a(2)^{2}+b(2)+c \end{matrix}\right. \rightarrow\)

\( \left\{\begin{matrix} b=-2a \\ \Delta = 0 \\ 4a+2b+c-1=0 \end{matrix}\right. \rightarrow\)

\( \left\{\begin{matrix} b=-2a \\ a(a-1) = 0 \\ c-1=0 \end{matrix}\right. \rightarrow\)

\( \left\{\begin{matrix} b=-2 \\ a = 1 \\ c=1 \end{matrix}\right. \)

E l’equazione della parabola sarebbe:

\( y=x^2-2x+1\)

Rappresentata nella figura seguente:

Figura 1 Rappresentazione grafica della parabola \( y=x^2-2x+1 \)
Pubblicato il

Come risolvere esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Reading Time: < 1 minute

Testo

Determinare il valore di k affinché l’iperbole di equazione \frac{x^2}{9}-\frac{y^2}{1+k} = 1 sia tangente alla retta di equazione 4x - 9y - 6 = 0. Continua a leggere Come risolvere esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Pubblicato il

Soluzione esercizio n°217 pagina 198 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Reading Time: 3 minutes

Testo

La parabola di equazione

y= -x^2 + 8x -7

interseca l’asse x nei punti A e B. Determina due punti C e D sulla parabola che formino con A e B un trapezio isoscele di base maggiore AB e area 32.

Soluzione

La parabola è convessa e interseca l’asse x per valori di ascisse ricavabili da questa formula:

x_{1,2} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-7)}}{2\cdot(-1)}

Da cui:

x_{1} = 1 e x_{2} = 7

intersezione parabola
Figura 1. Rappresentazione della parabola e dei punti A e B

La base maggiore AB misura quindi 6.

La formula dell’area di un trapezio isoscele è:

A_{Trapezio} = \frac{(B+b)h}{2}

Di cui sono noti solo:

A_{Trapezio} = 32 e B = 6

Per trovare una relazione che leghi b e hè necessario considerare il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

intersezione con h.png
Figura2. Rappresentazione geometrica del sistema precedente

E risolvere:

x^2 - 8x + (7+h) = 0

Quindi:

x_{1,2} = \frac{-(-8)\pm \sqrt{(-8)^2-4(1)(7+h)}}{2\cdot(1)}=

=\frac{8\pm \sqrt{36-4h}}{2}

Da cui:

x_{1} = 4-\sqrt{9-h} e x_{2} = 4+\sqrt{9-h}

E allora b sarà esprimibile come:

b=x_{2,b}-x_{1,b}= 2 \sqrt{9-h}

Volendo esplicitare h:

b^2 = 4(9-h) \rightarrow b^2 = 36-4h \rightarrow h= \frac{36-b^2}{4}

Quindi:

A_{Trapezio} = \frac{(B+b)}{2} \cdot \frac{36-b^2}{4}

E allora:

32 = \frac{(6+b)(36-b^2)}{8} \rightarrow

256 = (6+b)(36-b^2) \rightarrow

256 = 216-6b^2+36b-b^3 \rightarrow

b^3+6b^2-36b+40=0

Da Ruffini:

(b-2)(b^2+8b-20)=0

Da cui:

b_{1}=2

E:

b_{2,3}= \frac{-8 \pm \sqrt{64+80}}{2} \rightarrow

b_{2}=2 e b_{3}=-10

L’unica delle soluzioni ammissibili è 2 (non esistono lunghezze negative), ciò significa che la base minore è lunga 2.

Poiché:

h= \frac{36-b^2}{4}

allora:

h= 8

Se ciò è vero significa che il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

Deve essere riscritto come segue:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=8\end{matrix}\right.

In quanto h= 8 e il segmento base minore del trapezio giace sulla retta y= 8 .

Volendo trovare quindi i punti C e D richiesti dal problema si deve risolvere la seguente:

-x^2 + 8x -15=0

E quindi:

x_{C,D} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-15)}}{2\cdot(-1)} \rightarrow

x_{C} = 3 ; x_{D} = 5

Da cui, in definitiva:

A(1;0),B(7;0),C(3;8),D(5;8)

area parbola
Figura 3. Rappresentazione grafica della soluzione

Ti è piaciuto questo post? Se sì non dimenticare di mettere il mi piace e se ti senti generoso effettua una donazione, la puoi effettuare direttamente qui sotto.

Se pensi che ci siano delle cose sbagliate (o pensi che abbia motivato male o poco qualcosa) ti sarei grato se le commentassi qui sotto e nei tempi più brevi che potrò effettuerò una correzione per migliorare la qualità dei contenuti.

In ogni caso ti ringrazio di aver visitato il mio sito, a presto!

Donazione

Ciao 🙂 ti è piaciuto il contenuto di questo post? Se la risposta è sì e/o vorresti vedere più contenuti effettua una donazione a tua scelta. Ricorda che in questo sito risolvo esercizi e se vuoi posso farlo per te. Potrai chiedermi la risoluzione di uno qualunque degli esercizi del tuo libro, a patto che questi siano di campi che posso trattare. Manda pure una mail a andrea.zedda@outlook.it. Ti aspetto, a presto!

€1,00