Pubblicato il

Come risolvere l’esercizio n.28 pag. G55 Matematica multimediale.blu 1

Reading Time: < 1 minute

L’esercizio è presente anche nei seguenti libri:

  • n.25 pag. G48 Matematica multimediale.verde 1
  • n.25 pag. G44 Matematica multimediale.bianco 1
  • n.28  pag.G49 Matematica multimediale.azzurro 1

1 Testo

Traccia due segmenti AB e CD che si intersecano nel punto M, che è il punto medio di entrambi. Dimostra che i triangoli AMC e BMD sono congruenti.

2 Prerequisiti

Per rispondere al quesito bisogna sapere:

  • il concetto di congruenza;
  • il primo criterio di congruenza;
  • il concetto di punto medio;
  • la distinzione tra ipotesi, dimostrazione e tesi.

3 Soluzione

3.1 Ipotesi e tesi

Ipotesi
\( AM\cong MB \)
\(CM\cong MD\)
Tesi
\(AMC\cong BMD \)

Di seguito viene mostrato graficamente il caso di cui è necessario fornire dimostrazione.

Figura 1. Illustrazione grafica del problema

3.2 Dimostrazione

Consideriamo i triangoli \(AMC\) e \(MBD\).

Essi hanno:

  • \(AM\cong MB\) per ipotesi
  • \(CM\cong MD\) per ipotesi
  • \(A\hat{M}C\cong B\hat{M}D\) perchè angoli opposti al vertice M

Dunque i due triangoli, avendo due lati e l’angolo tra essi compreso ordinatamente congruenti, sono congruenti, per il primo criterio di congruenza.

Quindi:

\(AMC\cong BMD \).

Come volevasi dimostrare.

Pubblicato il

Come risolvere esercizio n. 34 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes

L’esercizio è presente anche nel seguente libro

  • esercizio n. 34 pag. 215 (Matematica.rosso 3 con tutor)

1 Testo

Determina per quale valore di k si ottiene una retta del fascio di equazione

\( kx+\left(1-2k\right)y+3+k=0\)

  1. passante per l’origine;
  2. parallela alla retta;
  3. perpendicolare alla retta

2 Prerequisiti

Per capire e risolvere l’esercizio è necessario conoscere:

  • l’equazione della retta (implicita ed esplicita)
  • come calcolare il coefficiente angolare della retta
  • come calcolare il valore di quota della retta
  • il concetto di fascio di rette proprio e improprio
  • come ricavare il coefficiente angolare di una retta parallela o perpendicolare a un’altra retta

3 Soluzione

3.1 Punto 1

Determiniamo l’equazione della retta del fascio passante per l’origine.

\( kx+\left(1-2k\right)y+3+k=0\)

Sostituiamo le coordinate dell’origine nell’equazione del fascio:

\( 0x +(1-2k)0+3+k=0 \)

\(0+0+3+k=0 \)

\(3+k=0 \)

\( k=-3 \)

Il valore di k per cui si ottiene l’equazione della retta del fascio passante per l’origine è \( -3 \).

3.2 Punto 2

Determiniamo l’equazione della retta del fascio parallela alla retta \( r: x=5 \).

Il coefficiente angolare della retta di equazione \( x = 5 \) è \( \infty \) e rappresenta una retta verticale. In questo caso non possiamo porre il coefficiente angolare uguale a \( \infty \), ma doppiamo porre uguale a \( 0\) il coefficiente della y nel fascio:

\( 1-2k=0 \)

da cui

\( -2k=-1 \)

quindi

\( k=\frac{1}{2} \)

Il valore di k per cui si ottiene l’equazione della retta del fascio parallela alla retta r è \( \frac{1}{2} \).

3.3 Punto 3

Determiniamo l’equazione della retta del fascio perpendicolare  alla retta \( s:x+y=5 \).

Iniziamo calcolando il coefficiente angolare della retta s:

\( m_s =-\frac{a}{b}=-3 \)

Calcoliamo il coefficiente angolare del fascio è:

\(m_f=-\frac{a}{b}=-\frac{k}{1-2k} \)

Dovendo determinare  una retta perpendicolare deve essere che:

\(m_f=-\frac{1}{m_s} =-\frac{1}{-3}=\frac{1}{3} \)

cioè:

\(-\frac{k}{1-2k}=\frac{1}{3} \)

\(-3k=1-2k \)

\(-3k+2k=1 \)

\(-k=1\)

\(k=-1\)

Il valore di k per cui si ottiene l’equazione della retta del fascio perpendicolare alla retta s è \( -1 \).

Figura 1. Rappresentazione delle rette del fascio , nelle condizioni indicate dall’esercizio.

Di cosa hai bisogno? Faccelo sapere, presto!

Pubblicato il

Soluzione di esercizio per rintracciamento asintoti e ascisse in comune a due funzioni

Reading Time: < 1 minute

Testo

Date le funzioni  \( f(x)=\frac{x^{4}+2 x-1}{x^{2}+1} \) e \( g(x)=f(x)-x^{2} \) trova l’asintoto orizzontale della funzione \( g(x) \). Calcola poi un punto P sul grafico di f(x) e un punto Q sul grafico della parabola di equazione \( y = x^2 +1\) aventi la stessa ascissa \( x>0 \). Calcola \( \overline{PQ} \) .

Soluzione

La funzione \( g(x) \) è definita come:

\( g(x)=\frac{x^{4}+2 x-1}{x^{2}+1}-x^{2}= \)

\( \frac{x^{4}+2 x-1}{x^{2}+1}-\frac{x^{2}\left(x^{2}+1\right)}{x^{2}+1}= \)

\( \frac{x^{4}+2 x-1-x^{4}-x^{2}}{x^{2}+1}=\frac{-x^{2}+2 x-1}{x^{2}+1}\)

Per trovare l’asintoto orizzontale destro della funzione è necessario calcolare \( \lim _{x \rightarrow+\infty} g(x) \). Procediamo:

\( \lim _{x \rightarrow+\infty} \frac{-x^{2}+2 x-1}{x^{2}+1}= \)

\( \frac{-(+\infty)^{2}+2(+\infty)-1}{(+\infty)^{2}+1}= \)

\( \frac{-\infty+\infty-1}{\infty+1}=\frac{\infty}{\infty}\)

Siamo di fronte a una forma indeterminata \( \frac{\infty}{\infty} \). Per risolvere la forma indeterminata è possibile procedere con due metodi. Il primo prevedere il raccogliere la x di grado massimo al numeratore e al denominatore per scrivere una forma equivalente della funzione, il secondo prevede l’applicazione del teorema del confronto degli infinitesimi. Vediamo ora l’applicazione del primo metodo.

\( \lim _{x \rightarrow+\infty} \frac{-x^{2}+2 x-1}{x^{2}+1}= \)

\( \lim _{x \rightarrow+\infty} \frac{x^{2}\left(-1+\frac{2}{x}-\frac{1}{x^{2}}\right)}{x^{2}\left(1+\frac{1}{x^{2}}\right)}= \)

\( \lim _{x \rightarrow+\infty} \frac{\left(-1+\frac{2}{x}-\frac{1}{x^{2}}\right)}{\left(1+\frac{1}{x^{2}}\right)}= \)

\( \frac{-1+\frac{2}{\infty} \frac{1}{\infty^{2}}}{1+\frac{1}{\infty^{2}}}=\frac{-1+0-0}{1+0}=\frac{-1}{1}=-1\)

Ti è piaciuto questo articolo?

Pubblicato il

Come risolvere esercizio n.32 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes

L’esercizio è presente anche nei seguenti libri:

  • esercizio 33 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 32  pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si trova il valore del parametro m della retta r_{AB} che passa per  due punti A e B , parallela ad un’altra retta r.

Inoltre si calcola il perimetro del triangolo formato dalla retta r_{AB} e un punto C sull’asse delle ascisse.

1         Testo

Determina per quale valore del parametro \( m \) la retta passante per i punti  \( A(m+1;2) \) e \( B(1;m) \) è parallela alla retta \( y=3x+1 \)Trova poi il perimetro del triangolo ABC con C punto di intersezione tra l’asse \( x \) e la retta \( y=x+1 \).

1          Soluzione

La retta passante per AB deve essere parallela alla retta  \( r: y=3x+1
\) con \( m_r=3\).

Per la condizione di parallelismo i coefficienti angolari delle due rette
devono essere uguali:

\(
m_{AB}=m_r \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (1) \)

Determiniamo il coefficiente angolare tra i due punti:

\( m_{AB}=\frac{y_B-y_A}{x_B-x_A}=\frac{m-2}{1-m-1}=\frac{m-2}{-m}=-\frac{m-2}{m} \)

Per la (1), deve essere:

\( -\frac{m-2}{m}=3\)

da cui

\( -(m-2)=3m\)

\( -m+2-3m=0\)

\( -4m=-2\)

\( m=\frac{2}{4}=\frac{1}{2}\)

quindi

\( m= \frac{1}{2}\)

Determiniamo le coordinate dei punti A e B, sostituendo il valore di \(
m=\frac{1}{2} \):

\( (m+1;2)\rightarrow\left(\frac{1}{2}+1 ; 2\right)\rightarrow A\left(\frac{3}{2}
; 2\right)\)

e

\( B(1;m)\rightarrow B\left(1;\frac{1}{2}\right)\)

Determiniamo il punto di intersezione tra l’asse \( x \) e la retta data \(
y=x+1 \).

Risolvendo il seguente sistema:

\( \left \{ \begin{matrix} y=x+1 \\ y=0 \end{matrix} \right. \)

da cui:

\( x+1=0\rightarrow x=-1 \)

otteniamo le coordinate del punto \( C(-1,0)\).

Utilizzando la formula distanza
tra due punti:

\( d=\sqrt{(x_2-x_1 )^2+(y_2-y_1 )^2}\)

calcoliamo i lati del triangolo:

\( AB=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(\frac{1}{2}-2\right)^2}=\sqrt{\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{10}{4}}=\frac{1}{2}\sqrt{10}\)

\( BC=\sqrt{\left(-1-1\right)^2+\left(0-\frac{1}{2}\right)^2}=\sqrt{4+\frac{1}{4}}=\sqrt{\frac{17}{4}}=\frac{1}{2}\sqrt{17}\)

\( AC=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(0-2\right)^2}=\sqrt{\frac{25}{4}+4}=\sqrt{\frac{41}{4}}=\frac{1}{2}\sqrt{41}\)

Ora possiamo calcolare il perimetro del triangolo:

\( P=AB+BC+AC=\frac{1}{2}\sqrt{10}+\frac{1}{2}\sqrt{17}+\frac{1}{2}\sqrt{41}=\frac{1}{2}\left(\sqrt{10}+\sqrt{17}+\sqrt{41}\right)\)

 

Figura 1. Rappresentazione completa della situazione proposta dal problema. Vengono rappresentate le tre rette discusse in questo esercizio e il triangolo identificato dai tre punti A, B e C.
Pubblicato il

Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)

Reading Time: < 1 minute

Autore: Antonio Reno;

Revisore: Andrea Zedda

L’esercizio è presente anche nei seguenti libri:

  • esercizio 28 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 27 pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si calcola l’equazione della retta passante per l’altezza di un triangolo nel piano cartesiano ma anche come si trova la retta passante per un vertice del triangolo e parallela a un lato del triangolo stesso.

1 Testo

Dato il triangolo di vertici A(-2,4), B(4,3) e C(2,-2), determinare:

  1. l’equazione della retta passante per l’altezza relativa al lato AC;
  2. l’equazione della retta passante per A e parallela al lato BC.

2 Soluzione

2.1 Punto 1

Utilizzando la formula della retta passante per due punti:

\( \frac{y-y_{2}}{y_{1}-y_{2}}=\frac{x-x_{2}}{x_{1}-x_{2}} \)

Trovando la retta che passa per AC:

\( r_{A C}: \frac{y+2}{4+2}=\frac{x-2}{-2-2} \rightarrow \)

\( \frac{y+2}{6}=\frac{x-2}{-4} \rightarrow-4(y+2)=6(x-2) \rightarrow-4 y-8=6 x-12 \)

Quindi…

Pubblicato il

Soluzione di un esercizio di calcolo integrale non immediato

Reading Time: < 1 minute

Testo

Si voglia svolgere il seguente integrale:

\int \frac{1}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}

Continua a leggere Soluzione di un esercizio di calcolo integrale non immediato
Pubblicato il

Come risolvere esercizio n°132 pag 893 libro 4 Matematica.blu 2.0 con Tutor – Primo quesito

Reading Time: < 1 minute

Testo

Dato il settore circolare AOB di ampiezza \frac{\pi}{3} e raggio \sqrt{3}, considera il punto P sull’arco AB e con esso costruisci il rettangolo inscritto DCPS tale che DC appartenga al raggio OA. Determina l’area del rettangolo DCPS in funzione dell’angolo \widehat{AOP}=x.

Soluzione

Pubblicato il

Altri 2 problemi sui triangoli qualunque

Reading Time: 4 minutes

1         Esercizio 1

1.1         Testo

Relativamente al triangolo in figura, determina i lati e gli angoli, conoscendo gli elementi indicati.

Figura 1 Triangolo del problema

1.2         Soluzione

Per calcolare l’angolo \gamma si procede come segue:

\gamma=180^{\circ}-\alpha-\beta=77^{\circ}

Ora vogliamo trovare \overline{A C} e \overline{A B}. Per poterlo fare si procede come segue.

Prima di tutto si considera che:

\overline{AC} \cdot \cos (\gamma)+\overline{AB} \cdot \cos (\beta)= \overline{B C}

Inoltre si può osservare che:

\overline{AC} \cdot \sin(\gamma) = \overline{AB} \cdot \sin (\beta)

Spiegato dalla figura seguente.

Figura 2 Osservazione sul calcolo del segmento

Perciò per trovare il valore di  basta risolvere il seguente sistema:

\left \{ \begin{matrix} \overline{AC} \cdot \cos (\gamma)+\overline{AB} \cdot \cos (\beta)= \overline{B C} \\ \overline{AC} \cdot \sin(\gamma) = \overline{AB} \cdot \sin (\beta) \end{matrix} \right.

\left \{ \begin{matrix} \overline{AC} \cdot \cos (77)+\overline{AB} \cdot \cos (70)= 20 \\ \overline{AC} \cdot \sin(77) = \overline{AB} \cdot \sin (70) \end{matrix} \right.

\left \{ \begin{matrix} \frac{\sin(70)}{\sin(77)} \cdot \overline{AB} \cdot \cos (77)+\overline{AB} \cdot \cos (70)= 20 \\ \overline{AC} = \frac{\sin(70)}{\sin(77)} \cdot \overline{AB} \end{matrix} \right.

\left \{ \begin{matrix}  \overline{AB}= \frac{20}{\frac{\sin(70)}{\sin(77)} \cdot \cos (77) + \cos (70) } \\ \overline{AC} = \frac{\sin(70)}{\sin(77)} \cdot \overline{AB} \end{matrix} \right.

\left \{ \begin{matrix} \overline{AB} \approx 35.78 \\ \overline{AC} \approx 34.5 \end{matrix} \right.

2         Esercizio 6

2.1         Testo

In un trapezio isoscele la base maggiore è lunga 40 cm e l’altezza è di 12 cm. Sapendo che gli angoli adiacenti alla base maggiore sono di 70°, calcola il perimetro e l’area del trapezio.

Figura 3 Immagine che rappresenta il trapezio del problema

2.2         Soluzione

Siccome il trapezio è isoscele si sa che \overline {AD} = \overline {BC}

Chiamiamo la proiezione di C su \overline {AB} come C', si sa che l’angolo \widehat{C C^{\prime} B}=90^{\circ}, quindi il triangolo  è rettangolo in C'.

Per il triangolo CC^{\prime} B vale che:

\overline{C B} \cdot \sin 70^{\circ}=12 \rightarrow

\overline{C B}=\frac{12}{\sin 70^{\circ}} \approx 12.77

Da cui si può ricavare che:

\overline{C^{\prime} B}=\overline{C B} \cdot \cos 70^{\circ} \approx 4.1

E quindi:

\overline{A B}=\overline{A D^{\prime}}+\overline{D^{\prime} C^{\prime}}+\overline{C^{\prime} B}

In cui D^{\prime} è la proiezione di D su \overline{AB}

Si può constatare che \overline{A D^{\prime}}=\overline{C^{\prime} B}.

Siccome la lunghezza della base minore è pari a \overline{ D^{\prime} C^{\prime}} si effettua la seguente operazione:

\overline{D^{\prime} C^{\prime}}=\overline{A B}-2 \cdot \overline{C^{\prime} B}=40-2 \cdot 4.1=31.8

Quindi il perimetro del trapezio è pari a:

P_{t p z}=40+12.77+12.77+31.8 \approx 95.34

E l’area del trapezio è pari a:

A_{t p z}=\frac{(40+31.8) \cdot 12}{2} \approx 430.8

Qui di seguito puoi scaricare il documento relativo al post:

Pubblicato il

Problemi sui triangoli qualunque

Reading Time: 3 minutes

In fondo a questo post puoi scaricare il documento relativo agli esercizi svolti qui di seguito.

1         Esercizio 1

1.1         Testo

Determina l’elemento incognito nelle seguenti figure:

Figura 1 Figure problema
Continua a leggere Problemi sui triangoli qualunque
Pubblicato il

Come fare la somma di due numeri complessi

Reading Time: 2 minutes

Un numero complesso è un elemento appartenente all’insieme dei numeri complessi \mathbb{C} ed è esprimibile in questo modo:

a+ib

Dove:

  •  a è la parte reale del numero complesso;
  •  b è la parte immaginaria del numero complesso;
  •  i è quel numero immaginario per cui vale i= \sqrt{-1} e i^2 = -1

I numeri complessi sono rappresentabili sul cosiddetto piano complesso, come dei semplici vettori, con la coda centrata nell’origine O(0;0). Sugli assi x e y sono invece rappresentate le componenti, le cui lunghezze sono rappresentative dei valori della parte reale e della parte immaginaria.

Figura 1 Rappresentazione di un numero complesso e delle sue componenti nel piano complesso

La somma

La somma di due numeri complessi avviene come per i vettori, sommando le rispettive componenti.

Dati due numeri complessi a+ib e c+id la loro somma è:

(a+ib) + (c+id) = (a+c)+i(b+d)

Quindi la somma di due numeri complessi si ottiene sommando tra loro le rispettive parti reali e immaginarie.

Un esempio

Testo

Si calcoli la somma dei numeri complessi  (2+i5) e (-3+i)

Soluzione

La somma è data da:

(2+i 5)+(-3+i)=(2-3)+i(5+1)=-1+i 6