Pubblicato il

Soluzione esercizio 138-Pag 834 Matematica Azzurro seconda edizione

Reading Time: < 1 minute

Testo

Figura 1: Triangolo esercizio

Soluzione

Calcoliamo inizialmente l’angolo \(\hat{C}\):

\(\hat{C}={arcsin{\frac{3}{5}}}{\approx {\frac{\pi}{5}}} \)

Conoscendo gli angoli \(\hat{A}\) e \(\hat{C}\) andiamo dunque a calcolare l’angolo \(\hat{B}\):

\(\hat{B}={\pi-{\frac{\pi}{3}}-{\frac{\pi}{5}}}={\frac{7\pi}{15}} \)

Conoscendo i lati AB, BC e l’angolo \(\hat{B}\) tra essi compreso applicando la formula dell’area di un triangolo qualunque abbiamo:

\(Area_{ABC}={\frac{{AB}\cdot{BC}}{2}\cdot{\sin{{\hat{B}}}}}={\frac{{20}\cdot{8\sqrt{3}}\cdot{\sin{\frac{7\pi}{5}}}}{2}}=137.56 {\approx24(\sqrt{3}+4)} \)

Pubblicato il

Come calcolare il perimetro e le mediane e di un triangolo isoscele data la base e l’area

Reading Time: 2 minutes

Testo

Determina il perimetro e le mediane di un triangolo isoscele, di area 48a2, sapendo che la sua base ha una lunghezza 16a.

Soluzione

Figura 1: Triangolo rettangolo con le mediane

Possiamo determinare inizialmente la mediana AA’ che parte dal vertice A. Come si può notare in figura 1, la mediana AA’ corrisponde anche all’altezza del nostro triangolo; e avendo noti rispettivamente base e area, si ottiene che:

Per trovare i lati obliqui del triangolo isoscele, possiamo dividerlo in due triangoli rettangoli equivalenti. I cateti son definiti da BC/2=CA’=BA’ e AA’, e le ipotenuse dai segmenti AC e AB. Perciò applicando il teorema di Pitagora:

Il perimetro sarà dunque calcolato come:

mentre le due mediane BB’ e CC’ sono equivalenti e saranno date da:

Se desideri scaricare il problema e la risoluzione in formato pdf puoi farlo cliccando nel pulsante sottostante

Pubblicato il

Integrale indefinito

Reading Time: 4 minutesIn collaborazione con: Francesco Atzeni

Supponiamo di avere una funzione f(x) e di voler trovare quella funzione F(x) tale che la sua derivata sia uguale a f(x), allora si può concludere che:

F'(x) = f(x)

In matematica si dice che F(x) è la primitiva di f(x), ciò significa che derivando F(x) si ottiene f(x). Continua a leggere Integrale indefinito

Pubblicato il

Soluzione esercizio n°217 pagina 198 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Reading Time: 3 minutes

Testo

La parabola di equazione

y= -x^2 + 8x -7

interseca l’asse x nei punti A e B. Determina due punti C e D sulla parabola che formino con A e B un trapezio isoscele di base maggiore AB e area 32.

Soluzione

La parabola è convessa e interseca l’asse x per valori di ascisse ricavabili da questa formula:

x_{1,2} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-7)}}{2\cdot(-1)}

Da cui:

x_{1} = 1 e x_{2} = 7

intersezione parabola
Figura 1. Rappresentazione della parabola e dei punti A e B

La base maggiore AB misura quindi 6.

La formula dell’area di un trapezio isoscele è:

A_{Trapezio} = \frac{(B+b)h}{2}

Di cui sono noti solo:

A_{Trapezio} = 32 e B = 6

Per trovare una relazione che leghi b e hè necessario considerare il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

intersezione con h.png
Figura2. Rappresentazione geometrica del sistema precedente

E risolvere:

x^2 - 8x + (7+h) = 0

Quindi:

x_{1,2} = \frac{-(-8)\pm \sqrt{(-8)^2-4(1)(7+h)}}{2\cdot(1)}=

=\frac{8\pm \sqrt{36-4h}}{2}

Da cui:

x_{1} = 4-\sqrt{9-h} e x_{2} = 4+\sqrt{9-h}

E allora b sarà esprimibile come:

b=x_{2,b}-x_{1,b}= 2 \sqrt{9-h}

Volendo esplicitare h:

b^2 = 4(9-h) \rightarrow b^2 = 36-4h \rightarrow h= \frac{36-b^2}{4}

Quindi:

A_{Trapezio} = \frac{(B+b)}{2} \cdot \frac{36-b^2}{4}

E allora:

32 = \frac{(6+b)(36-b^2)}{8} \rightarrow

256 = (6+b)(36-b^2) \rightarrow

256 = 216-6b^2+36b-b^3 \rightarrow

b^3+6b^2-36b+40=0

Da Ruffini:

(b-2)(b^2+8b-20)=0

Da cui:

b_{1}=2

E:

b_{2,3}= \frac{-8 \pm \sqrt{64+80}}{2} \rightarrow

b_{2}=2 e b_{3}=-10

L’unica delle soluzioni ammissibili è 2 (non esistono lunghezze negative), ciò significa che la base minore è lunga 2.

Poiché:

h= \frac{36-b^2}{4}

allora:

h= 8

Se ciò è vero significa che il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

Deve essere riscritto come segue:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=8\end{matrix}\right.

In quanto h= 8 e il segmento base minore del trapezio giace sulla retta y= 8 .

Volendo trovare quindi i punti C e D richiesti dal problema si deve risolvere la seguente:

-x^2 + 8x -15=0

E quindi:

x_{C,D} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-15)}}{2\cdot(-1)} \rightarrow

x_{C} = 3 ; x_{D} = 5

Da cui, in definitiva:

A(1;0),B(7;0),C(3;8),D(5;8)

area parbola
Figura 3. Rappresentazione grafica della soluzione

Ti è piaciuto questo post? Se sì non dimenticare di mettere il mi piace e se ti senti generoso effettua una donazione, la puoi effettuare direttamente qui sotto.

Se pensi che ci siano delle cose sbagliate (o pensi che abbia motivato male o poco qualcosa) ti sarei grato se le commentassi qui sotto e nei tempi più brevi che potrò effettuerò una correzione per migliorare la qualità dei contenuti.

In ogni caso ti ringrazio di aver visitato il mio sito, a presto!

Donazione

Ciao 🙂 ti è piaciuto il contenuto di questo post? Se la risposta è sì e/o vorresti vedere più contenuti effettua una donazione a tua scelta. Ricorda che in questo sito risolvo esercizi e se vuoi posso farlo per te. Potrai chiedermi la risoluzione di uno qualunque degli esercizi del tuo libro, a patto che questi siano di campi che posso trattare. Manda pure una mail a andrea.zedda@outlook.it. Ti aspetto, a presto!

€1,00