Equazione della parabola dato il vertice e un punto

Testo

Scrivere l’equazione della parabola, con asse parallelo a quello delle ordinate, avente il vertice nel punto di coordinate V(1 ; 0) e passante per il punto P(2; 1).

Soluzione

Per prima cosa si osserva che, dovendo essere la parabola ad asse parallelo a quello delle ordinate, la sua equazione deve essere nella forma:

y=a x^{2}+b x+c

Ora si osserva che le coordinate generali del vertice della parabola sono:

V\left(-\frac{b}{2 a} ;-\frac{\Delta}{4 a}\right)

Dai dati sappiamo che il vertice ha coordinate V(1 ; 0) e dunque devono essere rispettate le seguenti condizioni:

\left\{\begin{matrix}-\frac{b}{2 a}\\ -\frac{\Delta}{4 a}\end{matrix}\right.

Inoltre, essendo che la parabola passa per il punto P(2; 1) l’equazione della parabola deve essere soddisfatta quando attribuiamo a x e a y i valori del punto P. Quindi:

1=a(2)^{2}+b(2)+c

Che rappresenta la terza condizione del precedente sistema. Avendo 3 condizioni riusciamo a trovare i tre coefficienti.

Si deve dunque risolvere il seguente sistema per trovare i coefficienti della parabola:

\left\{\begin{matrix}-\frac{b}{2 a} = 1 \\ -\frac{\Delta}{4 a} = 0 \\ 1=a(2)^{2}+b(2)+c \end{matrix}\right. \rightarrow

\left\{\begin{matrix} b=-2a \\ \Delta = 0 \\ 4a+2b+c-1=0 \end{matrix}\right. \rightarrow

\left\{\begin{matrix} b=-2a \\ a(a-1) = 0 \\ c-1=0 \end{matrix}\right. \rightarrow

\left\{\begin{matrix} b=-2 \\ a = 1 \\ c=1 \end{matrix}\right.

E l’equazione della parabola sarebbe:

y=x^2-2x+1

Rappresentata nella figura seguente:

Figura 1 Rappresentazione grafica della parabola y=x^2-2x+1

Qui di seguito puoi scaricare il documento relativo all’esercizio appena svolto:

Esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Testo

Determinare il valore di k affinché l’iperbole di equazione \frac{x^2}{9}-\frac{y^2}{1+k} = 1 sia tangente alla retta di equazione 4x - 9y - 6 = 0. Continua a leggere “Esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)”

Esercizio equazione goniometrica di secondo grado

Si voglia risolvere la seguente equazione:

2cos^2(x)-3cosx+1=2sin^2(x)

Soluzione

Siccome:

cos^2(x)+sin^2(x)=1

Si ha che:

sin^2(x)=1-cos^2(x)

E quindi la 2cos^2(x)-3cosx+1=2sin^2(x) diventa:

2cos^2(x)-3cosx+1=2[1-cos^2(x)]

E ancora:

2cos^2(x)-3cosx+1=2-2cos^2(x) \rightarrow

4cos^2(x)-3cosx-1=0 \rightarrow

Ponendo:

t=cosx

Si ha:

4t^2-3t-1=0

Da cui si può calcolare:

t_{1,2} = \frac{-(-3) \pm \sqrt{(-3)^2-4(4)(-1)}}{2 \cdot 4} \rightarrow

t_{1,2} = \frac{3 \pm \sqrt{25}}{8} \rightarrow

E quindi:

t_{1} = -\frac{1}{4} e t_{2} = 1

Siccome poi:

t=cosx

Si ha che:

x_{1} = \pm arccos(-\frac{1}{4}) + 2k \pi \wedge x_{2} = 2k \pi con k \in \mathbb{Z}