Il cambio di volume di aria nella siringa

Testo

Una siringa ben tappata è chiusa da uno stantuffo lubrificato e contiene 0.80mL di aria alla temperatura ambiente di 20°C. La siringa così predisposta viene introdotta in un freezer dove la temperatura è mantenuta a -18°C.

  • Quale sarà il volume dell’aria nella stringa una volta raggiunto l’equilibrio termico con il freezer?

Soluzione

Per la prima legge di Gay-Lussac, espressa per i gradi centigradi, si ha:

V = V_0 (1+\alpha t )

In cui:

  • V è il volume del gas alla temperatura t;
  • V_0 è il volume del gas alla temperatura di 0 ^{\circ}C;
  • \alpha è il coefficiente di dilatazione termica del gas ideale, pari a \frac  {1}{273.14^{\circ}C};
  • t è la temperatura alla quale si trova il corpo.

Ne nostro caso si vuole calcolare il volume finale V_f del gas a -18°C . Per scoprire il valore del volume del’aria a 0°C si deve ricavare la formula inversa sfruttando volume iniziale V_i, il quale è pari a quello che avrebbe il gas se si trovasse alla temperatura di 20°C.

Quindi:

V_0 = \frac{V_i}{(1+\alpha t_i )}

In cui:

  • V_i è il volume iniziale del gas;
  • t_i è la temperatura iniziale alla quale si trova il corpo, cioè 20°C.

La stessa legge vale per il volume finale e quindi:

V_f = V_0 (1+\alpha t_f )

In cui:

  • V_f è il volume finale del gas;
  • t_f è la temperatura finale alla quale si trova il corpo, cioè -18°C.

Combinando le informazioni si può scrivere:

V_f = \frac{1+\alpha t_f }{1+\alpha t_i } V_i \rightarrow

\huge{V_f = \frac{1+\frac {1}{273.14^{\circ}C} \cdot (-18^{\circ}C) }{1+\frac {1}{273.14^{\circ}C} \cdot (20^{\circ}C)} }0.80mL \approx 0.70mL

Quindi il volume dell’aria nella stringa una volta raggiunto l’equilibrio termico con il freezer è di 0.70mL circa.

Qui di seguito puoi scaricare il documento relativo a questo esercizio:

Calcolo del campo elettrico generato da due cariche elettriche

Testo

Un triangolo rettangolo ha l’angolo in B di 30° e l’ipotenusa BC che misura 80.0cm. Nei vertici A e B sono fissate due cariche  Q_A=-2,4\mu C e Q_B=-9,6\mu C.

  • Disegna i campi elettrici prodotti dalle due cariche nel vertice C e calcola i moduli dei due campi
  • Disegna il campo elettrico totale in C e calcola il suo modulo

Continua a leggere “Calcolo del campo elettrico generato da due cariche elettriche”

Esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Testo

Determinare il valore di k affinché l’iperbole di equazione \frac{x^2}{9}-\frac{y^2}{1+k} = 1 sia tangente alla retta di equazione 4x - 9y - 6 = 0. Continua a leggere “Esercizio n°87 pag. 447 (3 Matematica.azzurro con Tutor, Seconda Edizione)”

Esercizio n°48 pag. 365 (Chimica concetti e modelli.blu – Dalla struttura atomica all’elettrochimica)

Testo

Uno sciroppo contiene 18,0% m/m di saccarosio C12H22O11 e ha densità 1,07g/mL.

  • Quanti grammi di zucchero sono contenuti in 1 L di soluzione?
  • Quali sono molarità e molalità della soluzione?

Continua a leggere “Esercizio n°48 pag. 365 (Chimica concetti e modelli.blu – Dalla struttura atomica all’elettrochimica)”

Esercizio n.11 pag. 233 (Le traiettorie della fisica.azzurro, seconda edizione)

Testo

Un operaio di una ditta di traslochi vorrebbe appoggiare un pianoforte di massa 275 kg su un solaio che può sopportare al massimo una pressione di 6\cdot10^{3}Pa.

Quale superficie di appoggio minima deve avere il pianoforte per non provocare danni al solaio? Continua a leggere “Esercizio n.11 pag. 233 (Le traiettorie della fisica.azzurro, seconda edizione)”

Rettangolo inscritto in una circonferenza – pag 131 n 495 (La matematica a colori – Algebra 2)

Testo

Un rettangolo, inscritto in una circonferenza, ha perimetro uguale a 30k; inoltre si sa che la somma della metà della base del rettangolo con l’altezza è 10k. Determina il raggio della circonferenza. Continua a leggere “Rettangolo inscritto in una circonferenza – pag 131 n 495 (La matematica a colori – Algebra 2)”

Esercizio equazione goniometrica di secondo grado

Si voglia risolvere la seguente equazione:

2cos^2(x)-3cosx+1=2sin^2(x)

Soluzione

Siccome:

cos^2(x)+sin^2(x)=1

Si ha che:

sin^2(x)=1-cos^2(x)

E quindi la 2cos^2(x)-3cosx+1=2sin^2(x) diventa:

2cos^2(x)-3cosx+1=2[1-cos^2(x)]

E ancora:

2cos^2(x)-3cosx+1=2-2cos^2(x) \rightarrow

4cos^2(x)-3cosx-1=0 \rightarrow

Ponendo:

t=cosx

Si ha:

4t^2-3t-1=0

Da cui si può calcolare:

t_{1,2} = \frac{-(-3) \pm \sqrt{(-3)^2-4(4)(-1)}}{2 \cdot 4} \rightarrow

t_{1,2} = \frac{3 \pm \sqrt{25}}{8} \rightarrow

E quindi:

t_{1} = -\frac{1}{4} e t_{2} = 1

Siccome poi:

t=cosx

Si ha che:

x_{1} = \pm arccos(-\frac{1}{4}) + 2k \pi \wedge x_{2} = 2k \pi con k \in \mathbb{Z}

Esercizio: disequazione di secondo grado logaritmica

Si vogliono trovare i valori di x che soddisfano la seguente disequazione:

[log_{2}(x+5)]^{2}-log_{2}(x+5)-6>0

Soluzione

Per risolvere la disequazione si pone:

t=log_{2}(x+5)

E così la disequazione di secondo grado diventa:

t^{2}-t-6>0

Di cui l’equazione di secondo grado associata ha soluzioni del tipo:

t_{1,2}= \frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-6)}}{2 \cdot (1)} \rightarrow

t_{1,2} = \frac{1 \pm \sqrt{25}}{2} \rightarrow

t_{1,2} = \frac{1 \pm 5}{2} \rightarrow

Da cui:

t_{1}=-2 e t_{2}=3

E quindi, essendo che t^{2}-t-6 ha il coefficiente a>0 (quindi è una parabola con concavità rivolta verso l’alto), si ha che è soddistatta per valori di t nei seguenti intervalli:

t<-2 \vee t>3

Ricordiamo ora che:

t=log_{2}(x+5)

Il logaritmo richiede che il proprio argomento sia maggiore di zero e cioè:

(x+5) > 0 \rightarrow

x>-5

Quindi si accettano soluzioni della [log_{2}(x+5)]^{2}-log_{2}(x+5)-6>0 solo se x>-5.

D’altra parte se è vero che t=log_{2}(x+5) deve anche essere che le soluzioni della disequazione di secondo grado logaritmica devono soddisfare:

log_{2}(x+5)<-2 \vee log_{2}(x+5)>3

Ovvero dovrebbe essere che:

(x+5)< \frac{1}{4} \vee (x+5)>8

E quindi:

x< - \frac{19}{4} \vee x>3

Ma siccome doveva essere che x>-5 le soluzioni sono:

-5<x< - \frac{19}{4} \vee x>3

Qui di seguito è rappresentata la funzione e le regioni in cui è maggiore di zero, che corrispondono alle soluzioni trovate.

logaritmo.png
Figura 1. in rosso la funzione y=[log(2,x+5)]^{2}-log(2,x+5)-6. In violetto le regioni in cui è positiva (maggiore di zero). La funzione risulta effettivamente essere positiva per -5<x< - \frac{19}{4} \vee x>3

Donazione

Ciao 🙂 ti è piaciuto il contenuto di questo post? Se la risposta è sì e/o vorresti vedere più contenuti effettua una donazione a tua scelta. Ricorda che in questo sito risolvo esercizi e se vuoi posso farlo per te. Potrai chiedermi la risoluzione di uno qualunque degli esercizi del tuo libro, a patto che questi siano di campi che posso trattare. Manda pure una mail a andrea.zedda@outlook.it. Ti aspetto, a presto!

€1,00

Esercizio n°217 pagina 198 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Testo

La parabola di equazione

y= -x^2 + 8x -7

interseca l’asse x nei punti A e B. Determina due punti C e D sulla parabola che formino con A e B un trapezio isoscele di base maggiore AB e area 32.

Soluzione

La parabola è convessa e interseca l’asse x per valori di ascisse ricavabili da questa formula:

x_{1,2} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-7)}}{2\cdot(-1)}

Da cui:

x_{1} = 1 e x_{2} = 7

intersezione parabola
Figura 1. Rappresentazione della parabola e dei punti A e B

La base maggiore AB misura quindi 6.

La formula dell’area di un trapezio isoscele è:

A_{Trapezio} = \frac{(B+b)h}{2}

Di cui sono noti solo:

A_{Trapezio} = 32 e B = 6

Per trovare una relazione che leghi b e hè necessario considerare il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

intersezione con h.png
Figura2. Rappresentazione geometrica del sistema precedente

E risolvere:

x^2 - 8x + (7+h) = 0

Quindi:

x_{1,2} = \frac{-(-8)\pm \sqrt{(-8)^2-4(1)(7+h)}}{2\cdot(1)}=

=\frac{8\pm \sqrt{36-4h}}{2}

Da cui:

x_{1} = 4-\sqrt{9-h} e x_{2} = 4+\sqrt{9-h}

E allora b sarà esprimibile come:

b=x_{2,b}-x_{1,b}= 2 \sqrt{9-h}

Volendo esplicitare h:

b^2 = 4(9-h) \rightarrow b^2 = 36-4h \rightarrow h= \frac{36-b^2}{4}

Quindi:

A_{Trapezio} = \frac{(B+b)}{2} \cdot \frac{36-b^2}{4}

E allora:

32 = \frac{(6+b)(36-b^2)}{8} \rightarrow

256 = (6+b)(36-b^2) \rightarrow

256 = 216-6b^2+36b-b^3 \rightarrow

b^3+6b^2-36b+40=0

Da Ruffini:

(b-2)(b^2+8b-20)=0

Da cui:

b_{1}=2

E:

b_{2,3}= \frac{-8 \pm \sqrt{64+80}}{2} \rightarrow

b_{2}=2 e b_{3}=-10

L’unica delle soluzioni ammissibili è 2 (non esistono lunghezze negative), ciò significa che la base minore è lunga 2.

Poiché:

h= \frac{36-b^2}{4}

allora:

h= 8

Se ciò è vero significa che il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

Deve essere riscritto come segue:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=8\end{matrix}\right.

In quanto h= 8 e il segmento base minore del trapezio giace sulla retta y= 8 .

Volendo trovare quindi i punti C e D richiesti dal problema si deve risolvere la seguente:

-x^2 + 8x -15=0

E quindi:

x_{C,D} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-15)}}{2\cdot(-1)} \rightarrow

x_{C} = 3 ; x_{D} = 5

Da cui, in definitiva:

A(1;0),B(7;0),C(3;8),D(5;8)

area parbola
Figura 3. Rappresentazione grafica della soluzione

Ti è piaciuto questo post? Se sì non dimenticare di mettere il mi piace e se ti senti generoso effettua una donazione, la puoi effettuare direttamente qui sotto.

Se pensi che ci siano delle cose sbagliate (o pensi che abbia motivato male o poco qualcosa) ti sarei grato se le commentassi qui sotto e nei tempi più brevi che potrò effettuerò una correzione per migliorare la qualità dei contenuti.

In ogni caso ti ringrazio di aver visitato il mio sito, a presto!

Donazione

Ciao 🙂 ti è piaciuto il contenuto di questo post? Se la risposta è sì e/o vorresti vedere più contenuti effettua una donazione a tua scelta. Ricorda che in questo sito risolvo esercizi e se vuoi posso farlo per te. Potrai chiedermi la risoluzione di uno qualunque degli esercizi del tuo libro, a patto che questi siano di campi che posso trattare. Manda pure una mail a andrea.zedda@outlook.it. Ti aspetto, a presto!

€1,00