Pubblicato il

Collisionatore (acceleratore particelle) Esercizio Svolto Traccia Maturità

Un collisionatore è un particolare acceleratore di particelle in cui le particelle accelerate in versi opposti lungo traiettorie circolari vengono fatte collidere frontalmente con velocità uguali e opposte. Supponiamo di considerare un elettrone con velocità 𝑣 = 𝑥𝑐 (𝑐 indica la velocità della luce nel vuoto, con – 1<x<1) nel sistema di riferimento del laboratorio, che collide frontalmente con un positrone (particella che ha la stessa massa dell’elettrone ma carica opposta) che ha velocità uguale e opposta a quella dell’elettrone.

Clicca sul bottone per andare alla soluzione

Pubblicato il

Forza elastica e legge di Hooke- Soluzione esercizio Amaldi blu Pag 102 n°12

Testo

La spinta di un motore di un jet è di circa 7,5×104. Immaginando di misurarla con un dinamometro si potrebbe determinare un allungamento l. Misurando la forza dei motori di un’astronave, l’allungamento sarebbe 400 volte l.

Quale forza produce il motore dell’astronave?

Soluzione

Un dinamometro è uno strumento composto da una molla, utile per misurare una determinata forza. Applicando una forza F si avrà un allungamento l della molla linearmente proporzionale alla forza applicata come descritto dalla legge di Hooke:

\(F={{k}\cdot{l}}\)

Dove F è la forza applicata, k la costante elastica intrinseca della molla ed l l’allungamento. Per il motore del jet abbiamo quindi:

\(F_{jet}={{k}{l}}={{7.5}\cdot{10^{4}}}N\)

Per il motore dell’astronave sapendo che l è 400 volte l’allungamento del motore a jet abbiamo, assumendo di usare lo stesso dinamometro e dunque la stessa costante elastica k:

\(F_{astronave}={{k}\cdot{400l}}={{400}\cdot{7.5}\cdot{10^{4}}}N={{3}\cdot{10^{7}}}N \)

Pubblicato il

Come determinare il raggio atomico dell’atomo d’idrogeno conoscendo la sua energia di ionizzazione

Testo

Determina il raggio atomico dell’atomo d’idrogeno sapendo che la sua energia di ionizzazione, cioè la minima energia richiesta per allontanare da esso un elettrone, è di 13,6 eV.

Prerequisiti


Per risolvere questo esercizio dovrai conoscere:

  1. I concetti di energia potenziale ed energia cinetica;
  2. La seconda legge della dinamica;
  3. Come invertire le formule;
  4. La carica dell’elettrone e del protone;
  5. La costante di Coulomb;
  6. Il concetto di energia totale
  7. La teoria associata al moto circolare uniforme
  8. Come convertire gli elettronVolt (eV) in Joule (J).

Soluzione

L’elettrone dell’atomo di idrogeno ruota intorno al nucleo mantenendo un’energia potenziale data dalla formula:
Si osservi che…

Pubblicato il

Soluzione esercizio numero 13 pag 997 – L’Amaldi per i licei scientifici.blu

Testo

Una bobina è composta da 35 spire, di raggio 2,5 cm, ed è collegata a un circuito che non contiene un generatore. Avvicinando e allontanando una calamita, il campo magnetico medio sulla superficie della bobina varia di 5,8 mT. La calamita viene spostata vicino e poi lontano dalla bobina quattro volte al secondo.

Calcola il modulo della forza elettromotrice media indotta nel circuito da tale variazione di flusso.

Prerequisiti

Per risolvere questo problema lo studente deve conoscere:

  • il concetto del flusso di campo magnetico;
  • le forumle relative al flusso di campo magnetico;
  • il concetto di vettore di superficie;
  • Il concetto di vettore di campo magnetico;
  • la differenze tra campo magnetico e flusso di campo magnetico.

Soluzione

Scarica il documento per ottenere la soluzione di questo esercizio. Se hai bisogno di assistenza puoi contattarci in qualsiasi momento.

Pubblicato il

Esercizio numero 12 pag. 997 (L’Amaldi per i licei scientifici.blu)

1 Testo

Una spira circolare di raggio 2,5 cm è immersa in un campo magnetico di modulo 0,15T. All’inizio è posta perpendicolarmente alle linee di campo. Successivamente subisce una rotazione di 30°. La rotazione avviene in 10 secondi.

  • Calcola la variazione del flusso del campo magnetico.
  • Calcola la forza elettromagnetica indotta
Vettore di campo magnetico e di superficie, dalla posizione iniziale a quella finale, come dai dati del problema. L’angolo rappresentato in rosso deve essere di 30°.

2 Prerequisiti

Per poter risolvere questo problema bisogna conoscere i seguenti concetti:

  • campo magnetico;
  • vettore superficie;
  • flusso di campo magnetico;
  • forza elettromotrice indotta.

3 Soluzione

3.1 Punto 1

Per risolvere il punto 1 dell’esercizio si deve calcolare il flusso del campo nautico finale e il flusso del campo magnetico iniziale, per poi effettuarne la differenza in modo da ricavare la variazione di flusso di campo magnetico.

Si consideri quindi… Se vuoi continuare a vedere la soluzione scarica il documento acquistandolo qui sotto.

Pubblicato il

Soluzione le traiettorie della fisica seconda edizione esercizio pag 65 num 45

Testo

Giuseppe misura la quantità di liquido contenuto in una pentola utilizzando un cilindro graduato che ha una portata di 150mL e una sensibilità di 5 mL. Con il liquido della pentola riempie per 5 volte il cilindro completamente e l’ultima volta fino alla tacca corrispondente al 40 mL.

  • Qual è il risultato della sua misura del contenuto della pentola?

Poi ripete la misura usando un cilindro con la stessa sensibilità e con la portata di 1,5 litri.

  • L’incertezza della misura cambia in questo caso?

Prerequisiti

Per risolvere il problema bisogna conoscere:

  • il significato di sensibilità dello strumento di misura;
  • il significato dell’incertezza di misura;
  • cosa si intende per misura.

Soluzione

Primo punto

Per risolvere il primo punto bisogna tenere in considerazione che la misurazione del contenuto è stata effettuata 6 volte, di cui 5 volte con il cilindro completamente pieno e 1 volta con il cilindro parzialmente pieno.

Questo significa che l’incertezza della misura si è accumulata 6 volte, risultando pari a 6 volte 5mL, cioè pari a 30mL. Infatti

\( 6 \cdot 5mL = 30mL\)

Se non ci fosse stata alcuna incertezza, la misura sarebbe stata di 790mL, perché sono stati aggiunti per 5 volte 150mL e per una volta 40 mL. Infatti:

\( 5 \cdot 150mL + 1 \cdot 40mL = 790mL\)

Quindi, rispondendo alla prima domanda, il risultato della sua misura del contenuto della pentola è di \( 790mL \pm 30mL\).

Secondo punto

Per il secondo punto invece viene effettuata solamente una misurazione e quindi l’incertezza stavolta cambia ed è meno rispetto alla volta precedente. Infatti il numero delle volte che si effettua la misura è solo 1 e non 6 come nel punto precedente. In questo caso dunque l’incertezza ammonta a soli 5 ml.

Pubblicato il

Come risolvere esercizio n. 43 pag. 448 – Le traiettorie della fisica.azzurro, Amaldi

1        Testo

I palloni stratosferici sono enormi aerostati in polietilene, che possono raggiungere il diametro di 200 m. Vengono lanciati con un carico di strumenti di rilevazione per effettuare esperimenti scientifici nell’alta atmosfera (possono arrivare a 40.000 m di quota). Un pallone stratosferico pieno di elio (densità \( \rho = 0.179 kg / m^3 \) )sale in aria (densità \( \rho = 1.29 kg / m^3 \) ) sollevato da una spinta ascensionale pari a \( 7.12 \cdot 10^5 N \).

Quale e il volume del pallone? (trascura la massa dell’involucro rispetto alla massa di elio)

2        Soluzione

Per risolvere il problema si deve tenere in considerazione che la spinta netta verso l’alto è il risultato di una spinta che batte anche la forza peso del pallone. Da questa considerazione si può affermare che la spinta ascensionale netta non è uguale alla forza che si utilizzerebbe nella formula di Archimede. Infatti la forza da utilizzare come spinta di Archimede è più grande della forza ascensionale dichiarata dal problema.

\( F_{A r c}=F_{a s c}+m_{e l} g \)

In cui:

  • \( F_{A r c} \) è la forza di Archimede;
  • \( F_{a s c} \) è la forza ascensionale dichiarata dal problema;
  • \( m_{e l} \) è la massa del pallone pieno d’elio;
  • \( g \) è l’accelerazione gravitazionale a cui viene sottoposto il pallone pieno d’elio.

D’altra parte deve essere vero che, per il principio di Archimede:

\( F_{A r c}=\rho_{a} V_{e l} g \)

In cui:

  • \( V_{e l}\) è il volume del pallone d’elio richiesto dal problema;
  • \( \rho_{a} \) è la densità dell’aria ed è un dato del problema.

Quindi:

\( F_{a s c}+m_{e l} g=\rho_{a} V_{e l} g \)

Ma siccome la densità del pallone pieno d’elio è:

\( \rho_{e l}=\frac{m_{e l}}{V_{e l}} \)

Allora si può scrivere anche che:

\( F_{a s c}+\rho_{e l} V_{e l} g=\rho_{a} V_{e l} g \)

Ovvero:

\( V_{e l}=\frac{F_{a s c}}{g\left(\rho_{a}-\rho_{e l}\right)} \approx 6.54 \cdot 10^{4} m^{3} \)

Quindi il volume del pallone pieno d’elio è pari a circa \( 6.54 \cdot 10^{4} m^{3} \).

Pubblicato il

Soluzione esercizio n°12 pag. 913 (L’Amaldi per i licei scientifici.blu 2)

Testo

Un cavetto di alluminio (densità \( \rho=2690 \mathrm{kg} / \mathrm{m}^{3} \) ), lungo \( 3.2m \), a sezione quadrata di lato \( 2.0mm \), percorso da una corrente di \( 33A \), è appoggiato su un tavolo da lavoro che presenta un coefficiente d’attrito \( \mu = 0.15 \). Un’asta di ferro molto lunga si trova fissata al tavolo parallelamente al filo a una distanza di \( 2.0 cm \).

Calcola il verso (rispetto alla prima) e l’intensità della minima corrente che occorrerebbe far scorrere nell’asta per allontanare il cavetto.

Prerequisiti

Per poter risolvere questo problema si deve conoscere:

  • La formula della forza di attrazione o repulsione di due fili percorsi da corrente;
  • Le procedure per effettuare la scomposizione dei vettori;
  • Le procedure per effettuare la somma vettoriale;
  • I concetti di modulo, direzione e verso del vettore.

Soluzione

Si osservi che il volume del cavetto è pari a quello di un prisma a base quadrata:

\( V=h l^{2}=3.2 \cdot\left(2 \cdot 10^{-3}\right)^{2} m^{3}=12.8 \cdot 10^{-3} \mathrm{m}^{3} \)

Per poter trovare la massa del filo si procede come segue:

\( m=\rho V=2690 \frac{\mathrm{kg}}{\mathrm{m}^{3}} \cdot 12.8 \cdot 10^{-6} \mathrm{m}^{3} \approx 0.034 \mathrm{kg} \)

La forza peso associata al filo di alluminio è quindi pari a:

\( F_{p}=m g=0.034 \mathrm{kg} \cdot 9.81 \frac{\mathrm{m}}{\mathrm{s}^{2}} \approx 0.333 \mathrm{N} \)

Quindi la forza d’attrito è pari a:

\( F_{a}=\mu F_{\perp}=0.15 \cdot 0.333 N \approx 0.05 N \)

Si ricordi che, per due fili percorsi da corrente, vale la seguente:

\( \overrightarrow{\boldsymbol{F}}=\frac{\mu}{2 \pi} \frac{i_{1} i_{2}}{d} l \cdot \widehat{\mathbf{u}}_{r} \)

In cui:

  • \( \overrightarrow{\boldsymbol{F}} \) è la forza di attrazione tra i due fili;
  • \( \frac{\mu}{2 \pi} \) è una costante, di cui \( \mu \) è la permeabilità magnetica del mezzo nel quale si trovano i fili;
  • \( i_1 \) è la corrente che attraversa il primo filo;
  • \( i_2 \) è la corrente che attraversa il secondo filo;
  • \( d \) è la distanza tra i due fili;
  • \( l \)è la lunghezza dei fili;
  • \( \widehat{\mathbf{u}}_{r} \)è un versore (vettore di modulo uno) che si trova sulla direzione che definisce la distanza tra i due fili.

Quindi deve essere:

\( \vec{F} \geq \vec{F}_{a} \)

Al minimo deve quindi essere:

\( \frac{\mu}{2 \pi} \frac{i_{1} i_{2}}{d} l+0.05 N=0 \)

Affinché sia vero, le due correnti che percorrono i due fili devono essere di verso opposto, così:

\( \frac{\mu}{2 \pi} \frac{i_{1} i_{2}}{d} l=0.05 N \)

La corrente desiderata è:

\( i_{2}=0.05 \frac{d 2 \pi}{l \mu i_{1}}=\frac{0.05 \cdot 2 \cdot 10^{-2} \cdot 2 \pi}{3.2 \cdot 4 \pi \cdot 10^{-7} \cdot 33}=\frac{0.05 \cdot 10^{-2} \cdot 33}{3.2 \cdot 10^{-7}} \approx 4.735 \cdot 10^{-4} \cdot 10^{5} A \approx 47.35 A \)

In definitiva l’intensità della minima corrente che occorrerebbe far scorrere nell’asta per allontanare il cavetto è di circa \( 47.35 A \)

Pubblicato il

Come risolvere esercizio n. 17 pag. 233 (Le traiettorie della fisica.azzurro, seconda edizione)

1. Testo

Le sezioni dei pistoni di un torchio idraulico hanno rapporto di 3 a 1. Vuoi usare il torchio per sollevare un’auto che pesa 15KN, quale forza minima devi essere in grado di esercitare?

2. Prerequisiti

Per poter risolvere il problema bisogna conoscere:

  • la legge fisica per il torchio idraulico;
  • il concetto di forza dalla seconda legge della dinamica;
  • cosa si intende per rapporto tra sezioni;
  • cosa si intende per forza minima.

3. Soluzione

La relazione tra le sezioni dei pistoni è la seguente:

\( \frac{S_{1}}{S_{2}}=\frac{1}{3} \)

Dove:

  •  \( S_{1} \) è la sezione del pistone più piccolo;
  •  \( S_{2} \)è la sezione del pistone più grande.
Figura 1. Rappresentazione schematica del torchio idraulico

Siccome deve essere:

\( F_{1}=\frac{S_{1}}{S_{2}} F_{2} \)

Dove:

  • \( S_{1} \) è la sezione del pistone più piccolo;
  •  \( S_{2} \)è la sezione del pistone più grande;
  •  \( F_{1} \)è la forza che agisce sul pistone più piccolo;
  •  \( F_{2} \)è la forza che agisce sul pistone più grande.

Al minimo si ha quindi che:

\( F_{1}=\frac{1}{3} 15 K N=5 K N \)

Che è la forza richiesta dal problema.

Pubblicato il

Soluzione esercizio pag. 236 n. 39 – Le traiettorie della fisica.azzurro seconda edizione

clear glass container with white round beads

Testo

Un cubo di materiale sconosciuto galleggia completamente immerso nel mercurio che ha densità \( d=13.6 \cdot 10^{3} \mathrm{kg} / \mathrm{m^3} \). La lunghezza di un lato del cubo è 1cm, quanto vale la massa del cubo?

Prerequisiti

Per poter risolvere il problema è necessario sapere:

  • il principio di Archimede;
  • il concetto di densità;
  • il secondo principio della dinamica;
  • convertire le unità di misura.

Soluzione

Se il cubo galleggia completamente deve valere:

\( F_{A}=g d_{\text {liq}} V_{\text {c}} \)

Dove:

  • \( F_A \) è la spinta di Archimede che contrasta la forza peso dell’oggetto in immersione;
  • \( g \) è l’accelerazione gravitazionale;
  • \( d_{liq} \) è la densità del liquido, nel nostro caso mercurio;
  • \( V_{c} \) è il volume del liquido spostato, cioè pari al volume totale del cubo, dal momento che è sommerso.

Quindi:

\( F_{A}=g d_{\text {liq}} V_{\text {c}}= \)

\( 9.81 \frac{\mathrm{m}}{\mathrm{s}^{2}} \cdot 13.6 \cdot 10^{3} \frac{\mathrm{kg}}{\mathrm{m}^{3}} \cdot 10^{-6} \mathrm{m}^{3} \)

\( \approx 0.133 N \)

Siccome il corpo galleggia ma è completamente immerso significa che:

\( F_A = F_P \)

Dove:

  • \( F_A \) è la spinta di Archimede che contrasta la forza peso dell’oggetto in immersione
  • \( F_P \) è la forza-peso del cubetto

Siccome poi:

\( F_P = m_c g \)

In cui \( m_c \) è la massa del cubetto.

Allora deve essere che:

\( m_c = \frac{F_A}{g} \approx 13.5g \)

In definitiva la massa del cubo è 13.5g.