Pubblicato il

Soluzione esercizio 138-Pag 834 Matematica Azzurro seconda edizione

Testo

Figura 1: Triangolo esercizio

Soluzione

Calcoliamo inizialmente l’angolo \(\hat{C}\):

\(\hat{C}={arcsin{\frac{3}{5}}}{\approx {\frac{\pi}{5}}} \)

Conoscendo gli angoli \(\hat{A}\) e \(\hat{C}\) andiamo dunque a calcolare l’angolo \(\hat{B}\):

\(\hat{B}={\pi-{\frac{\pi}{3}}-{\frac{\pi}{5}}}={\frac{7\pi}{15}} \)

Conoscendo i lati AB, BC e l’angolo \(\hat{B}\) tra essi compreso applicando la formula dell’area di un triangolo qualunque abbiamo:

\(Area_{ABC}={\frac{{AB}\cdot{BC}}{2}\cdot{\sin{{\hat{B}}}}}={\frac{{20}\cdot{8\sqrt{3}}\cdot{\sin{\frac{7\pi}{5}}}}{2}}=137.56 {\approx24(\sqrt{3}+4)} \)

Pubblicato il

Come trovare altezza relativa e equazione della retta parallela al lato di un triangolo

Testo

Dato il triangolo di vertici A(-2; 4), B(4; 3) e C(2; -2), determina:

a. l’equazione dell’altezza relativa al lato AC;

b. l’equazione della retta passante per A e parallela al lato BC;

Soluzione

Punto a.

Per trovare l’altezza relativa ad AC, sappiamo che è una retta perpendicolare ad AC e passante per il vertice opposto B.

Troviamo inizialmente il coefficiente angolare della retta AC:

\( m_{AC}={\frac{y_{C}- y_{A}}{ x_{C}-x_{A} }}={\frac{-2-4}{2-(-2)}}= {\frac{-3}{2}} \)

Sapendo che la condizione di perpendicolarità tra due rette, otteniamo poi il coefficente angolare della retta relativa AC:

\( m_{BH}={\frac{-1}{ m_{AC}}}={\frac{2}{3}} \)

Data la definizione della retta in forma esplicita \( y=mx+q \), sostituendo il coefficiente  \( m_{BH} \) e imponendo il passaggio per il vertice B(4,3):

\( 3= {\frac{2}{3}}*4+q \qquad q=1 \)

\( y= {\frac{2}{3}}x+{\frac{1}{3}} \)

In forma implicita diventa dunque:

\( 2x+3y+1=0 \)

Punto b.

Qualunque retta parallela al segmento BC avrà il suo stesso coefficiente angolare. Andando dunque a calcolarlo abbiamo:

\( m_{BC}={\frac{y_{C}- y_{B}}{ x_{C}-x_{B} }}={\frac{-2-3}{2-4}}= {\frac{5}{2}} \)

Data la definizione della retta in forma esplicita  \( y=mx+q \), sostituendo il coefficiente  \( m_{BC} \) e imponendo il passaggio per il punto A(-2; 4):

\( 4= {\frac{5}{2}}*(-2)+q \qquad q=9 \)

\( y= {\frac{5}{2}}x+9 \)

In forma implicita diventa dunque:

\( 5x-2y+18=0 \)

Rappresentazione delle rette ricavate con il triangolo discusso nel problema
Pubblicato il

Come calcolare il perimetro e le mediane e di un triangolo isoscele data la base e l’area

Testo

Determina il perimetro e le mediane di un triangolo isoscele, di area 48a2, sapendo che la sua base ha una lunghezza 16a.

Soluzione

Figura 1: Triangolo rettangolo con le mediane

Possiamo determinare inizialmente la mediana AA’ che parte dal vertice A. Come si può notare in figura 1, la mediana AA’ corrisponde anche all’altezza del nostro triangolo; e avendo noti rispettivamente base e area, si ottiene che:

Per trovare i lati obliqui del triangolo isoscele, possiamo dividerlo in due triangoli rettangoli equivalenti. I cateti son definiti da BC/2=CA’=BA’ e AA’, e le ipotenuse dai segmenti AC e AB. Perciò applicando il teorema di Pitagora:

Il perimetro sarà dunque calcolato come:

mentre le due mediane BB’ e CC’ sono equivalenti e saranno date da:

Se desideri scaricare il problema e la risoluzione in formato pdf puoi farlo cliccando nel pulsante sottostante

Pubblicato il

Vertice di una parabola. Come trovare una parabola con vertice V(2,3)

Testo

Illustra il concetto di vertice di una parabola. Fai un esempio di parabola con Vertice in V(2,3).

Soluzione

Pubblicato il

Come risolvere esercizio n°132 pag 893 libro 4 Matematica.blu 2.0 con Tutor – Primo quesito

Testo

Dato il settore circolare AOB di ampiezza \frac{\pi}{3} e raggio \sqrt{3}, considera il punto P sull’arco AB e con esso costruisci il rettangolo inscritto DCPS tale che DC appartenga al raggio OA. Determina l’area del rettangolo DCPS in funzione dell’angolo \widehat{AOP}=x.

Soluzione

Pubblicato il

Soluzione pag 131 n 495 (La matematica a colori – Algebra 2)

Testo

Un rettangolo, inscritto in una circonferenza, ha perimetro uguale a 30k; inoltre si sa che la somma della metà della base del rettangolo con l’altezza è 10k. Determina il raggio della circonferenza.

Continua a leggere Soluzione pag 131 n 495 (La matematica a colori – Algebra 2)
Pubblicato il

Soluzione esercizio n°217 pagina 198 (3 Matematica.azzurro con Tutor, Seconda Edizione)

Testo

La parabola di equazione

y= -x^2 + 8x -7

interseca l’asse x nei punti A e B. Determina due punti C e D sulla parabola che formino con A e B un trapezio isoscele di base maggiore AB e area 32.

Soluzione

La parabola è convessa e interseca l’asse x per valori di ascisse ricavabili da questa formula:

x_{1,2} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-7)}}{2\cdot(-1)}

Da cui:

x_{1} = 1 e x_{2} = 7

intersezione parabola
Figura 1. Rappresentazione della parabola e dei punti A e B

La base maggiore AB misura quindi 6.

La formula dell’area di un trapezio isoscele è:

A_{Trapezio} = \frac{(B+b)h}{2}

Di cui sono noti solo:

A_{Trapezio} = 32 e B = 6

Per trovare una relazione che leghi b e hè necessario considerare il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

intersezione con h.png
Figura2. Rappresentazione geometrica del sistema precedente

E risolvere:

x^2 - 8x + (7+h) = 0

Quindi:

x_{1,2} = \frac{-(-8)\pm \sqrt{(-8)^2-4(1)(7+h)}}{2\cdot(1)}=

=\frac{8\pm \sqrt{36-4h}}{2}

Da cui:

x_{1} = 4-\sqrt{9-h} e x_{2} = 4+\sqrt{9-h}

E allora b sarà esprimibile come:

b=x_{2,b}-x_{1,b}= 2 \sqrt{9-h}

Volendo esplicitare h:

b^2 = 4(9-h) \rightarrow b^2 = 36-4h \rightarrow h= \frac{36-b^2}{4}

Quindi:

A_{Trapezio} = \frac{(B+b)}{2} \cdot \frac{36-b^2}{4}

E allora:

32 = \frac{(6+b)(36-b^2)}{8} \rightarrow

256 = (6+b)(36-b^2) \rightarrow

256 = 216-6b^2+36b-b^3 \rightarrow

b^3+6b^2-36b+40=0

Da Ruffini:

(b-2)(b^2+8b-20)=0

Da cui:

b_{1}=2

E:

b_{2,3}= \frac{-8 \pm \sqrt{64+80}}{2} \rightarrow

b_{2}=2 e b_{3}=-10

L’unica delle soluzioni ammissibili è 2 (non esistono lunghezze negative), ciò significa che la base minore è lunga 2.

Poiché:

h= \frac{36-b^2}{4}

allora:

h= 8

Se ciò è vero significa che il sistema:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=h\end{matrix}\right.

Deve essere riscritto come segue:

\left\{\begin{matrix}y= -x^2 + 8x -7\\ y=8\end{matrix}\right.

In quanto h= 8 e il segmento base minore del trapezio giace sulla retta y= 8 .

Volendo trovare quindi i punti C e D richiesti dal problema si deve risolvere la seguente:

-x^2 + 8x -15=0

E quindi:

x_{C,D} = \frac{-(8)\pm \sqrt{(8)^2-4(-1)(-15)}}{2\cdot(-1)} \rightarrow

x_{C} = 3 ; x_{D} = 5

Da cui, in definitiva:

A(1;0),B(7;0),C(3;8),D(5;8)

area parbola
Figura 3. Rappresentazione grafica della soluzione

Ti è piaciuto questo post? Se sì non dimenticare di mettere il mi piace e se ti senti generoso effettua una donazione, la puoi effettuare direttamente qui sotto.

Se pensi che ci siano delle cose sbagliate (o pensi che abbia motivato male o poco qualcosa) ti sarei grato se le commentassi qui sotto e nei tempi più brevi che potrò effettuerò una correzione per migliorare la qualità dei contenuti.

In ogni caso ti ringrazio di aver visitato il mio sito, a presto!

Donazione

Ciao 🙂 ti è piaciuto il contenuto di questo post? Se la risposta è sì e/o vorresti vedere più contenuti effettua una donazione a tua scelta. Ricorda che in questo sito risolvo esercizi e se vuoi posso farlo per te. Potrai chiedermi la risoluzione di uno qualunque degli esercizi del tuo libro, a patto che questi siano di campi che posso trattare. Manda pure una mail a andrea.zedda@outlook.it. Ti aspetto, a presto!

€1,00