Pubblicato il

Come risolvere esercizio n.32 pag.177 (Matematica.verde 3G)

L’esercizio è presente anche nei seguenti libri:

  • esercizio 33 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 32  pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si trova il valore del parametro m della retta r_{AB} che passa per  due punti A e B , parallela ad un’altra retta r.

Inoltre si calcola il perimetro del triangolo formato dalla retta r_{AB} e un punto C sull’asse delle ascisse.

1         Testo

Determina per quale valore del parametro \( m \) la retta passante per i punti  \( A(m+1;2) \) e \( B(1;m) \) è parallela alla retta \( y=3x+1 \)Trova poi il perimetro del triangolo ABC con C punto di intersezione tra l’asse \( x \) e la retta \( y=x+1 \).

1          Soluzione

La retta passante per AB deve essere parallela alla retta  \( r: y=3x+1
\) con \( m_r=3\).

Per la condizione di parallelismo i coefficienti angolari delle due rette
devono essere uguali:

\(
m_{AB}=m_r \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (1) \)

Determiniamo il coefficiente angolare tra i due punti:

\( m_{AB}=\frac{y_B-y_A}{x_B-x_A}=\frac{m-2}{1-m-1}=\frac{m-2}{-m}=-\frac{m-2}{m} \)

Per la (1), deve essere:

\( -\frac{m-2}{m}=3\)

da cui

\( -(m-2)=3m\)

\( -m+2-3m=0\)

\( -4m=-2\)

\( m=\frac{2}{4}=\frac{1}{2}\)

quindi

\( m= \frac{1}{2}\)

Determiniamo le coordinate dei punti A e B, sostituendo il valore di \(
m=\frac{1}{2} \):

\( (m+1;2)\rightarrow\left(\frac{1}{2}+1 ; 2\right)\rightarrow A\left(\frac{3}{2}
; 2\right)\)

e

\( B(1;m)\rightarrow B\left(1;\frac{1}{2}\right)\)

Determiniamo il punto di intersezione tra l’asse \( x \) e la retta data \(
y=x+1 \).

Risolvendo il seguente sistema:

\( \left \{ \begin{matrix} y=x+1 \\ y=0 \end{matrix} \right. \)

da cui:

\( x+1=0\rightarrow x=-1 \)

otteniamo le coordinate del punto \( C(-1,0)\).

Utilizzando la formula distanza
tra due punti:

\( d=\sqrt{(x_2-x_1 )^2+(y_2-y_1 )^2}\)

calcoliamo i lati del triangolo:

\( AB=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(\frac{1}{2}-2\right)^2}=\sqrt{\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{10}{4}}=\frac{1}{2}\sqrt{10}\)

\( BC=\sqrt{\left(-1-1\right)^2+\left(0-\frac{1}{2}\right)^2}=\sqrt{4+\frac{1}{4}}=\sqrt{\frac{17}{4}}=\frac{1}{2}\sqrt{17}\)

\( AC=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(0-2\right)^2}=\sqrt{\frac{25}{4}+4}=\sqrt{\frac{41}{4}}=\frac{1}{2}\sqrt{41}\)

Ora possiamo calcolare il perimetro del triangolo:

\( P=AB+BC+AC=\frac{1}{2}\sqrt{10}+\frac{1}{2}\sqrt{17}+\frac{1}{2}\sqrt{41}=\frac{1}{2}\left(\sqrt{10}+\sqrt{17}+\sqrt{41}\right)\)

 

Figura 1. Rappresentazione completa della situazione proposta dal problema. Vengono rappresentate le tre rette discusse in questo esercizio e il triangolo identificato dai tre punti A, B e C.
Pubblicato il

Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)

Autore: Antonio Reno;

Revisore: Andrea Zedda

L’esercizio è presente anche nei seguenti libri:

  • esercizio 28 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 27 pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si calcola l’equazione della retta passante per l’altezza di un triangolo nel piano cartesiano ma anche come si trova la retta passante per un vertice del triangolo e parallela a un lato del triangolo stesso.

1 Testo

Dato il triangolo di vertici A(-2,4), B(4,3) e C(2,-2), determinare:

  1. l’equazione della retta passante per l’altezza relativa al lato AC;
  2. l’equazione della retta passante per A e parallela al lato BC.

2 Soluzione

2.1 Punto 1

Utilizzando la formula della retta passante per due punti:

\( \frac{y-y_{2}}{y_{1}-y_{2}}=\frac{x-x_{2}}{x_{1}-x_{2}} \)

Trovando la retta che passa per AC:

\( r_{A C}: \frac{y+2}{4+2}=\frac{x-2}{-2-2} \rightarrow \)

\( \frac{y+2}{6}=\frac{x-2}{-4} \rightarrow-4(y+2)=6(x-2) \rightarrow-4 y-8=6 x-12 \)

Quindi…

Pubblicato il

Come fare la somma di due numeri complessi

Un numero complesso è un elemento appartenente all’insieme dei numeri complessi \mathbb{C} ed è esprimibile in questo modo:

a+ib

Dove:

  •  a è la parte reale del numero complesso;
  •  b è la parte immaginaria del numero complesso;
  •  i è quel numero immaginario per cui vale i= \sqrt{-1} e i^2 = -1

I numeri complessi sono rappresentabili sul cosiddetto piano complesso, come dei semplici vettori, con la coda centrata nell’origine O(0;0). Sugli assi x e y sono invece rappresentate le componenti, le cui lunghezze sono rappresentative dei valori della parte reale e della parte immaginaria.

Figura 1 Rappresentazione di un numero complesso e delle sue componenti nel piano complesso

La somma

La somma di due numeri complessi avviene come per i vettori, sommando le rispettive componenti.

Dati due numeri complessi a+ib e c+id la loro somma è:

(a+ib) + (c+id) = (a+c)+i(b+d)

Quindi la somma di due numeri complessi si ottiene sommando tra loro le rispettive parti reali e immaginarie.

Un esempio

Testo

Si calcoli la somma dei numeri complessi  (2+i5) e (-3+i)

Soluzione

La somma è data da:

(2+i 5)+(-3+i)=(2-3)+i(5+1)=-1+i 6

Pubblicato il

Soluzione esercizio N°134 pag. 1254 – 4 matematica.blu 2.0 con Tutor

Testo

Stabilisci la posizione reciproca dei piani che hanno le seguenti equazioni:

\alpha : x-y+4=0; \beta : 4x - 4y + z + 4=0 Continua a leggere Soluzione esercizio N°134 pag. 1254 – 4 matematica.blu 2.0 con Tutor

Pubblicato il

Come risolvere esercizio N°132 pag. 1254 – 4 matematica.blu 2.0 con Tutor

Testo

Stabilisci la posizione reciproca dei piani che hanno le seguenti equazioni:

\( \alpha : x-y+2z=0; \beta : 2x – 2y + 8z + 1=0 \)

Continua a leggere Come risolvere esercizio N°132 pag. 1254 – 4 matematica.blu 2.0 con Tutor
Pubblicato il

Come fare il grafico di due rette su OpenOffice Calc

Di seguito viene mostrato come utilizzare OpenOffice Calc per rappresentare due rette sullo stesso piano cartesiano.

Continua a leggere Come fare il grafico di due rette su OpenOffice Calc