Pubblicato il

Come risolvere esercizio n. 43 pag. 448 – Le traiettorie della fisica.azzurro, Amaldi

Reading Time: 2 minutes

1        Testo

I palloni stratosferici sono enormi aerostati in polietilene, che possono raggiungere il diametro di 200 m. Vengono lanciati con un carico di strumenti di rilevazione per effettuare esperimenti scientifici nell’alta atmosfera (possono arrivare a 40.000 m di quota). Un pallone stratosferico pieno di elio (densità \( \rho = 0.179 kg / m^3 \) )sale in aria (densità \( \rho = 1.29 kg / m^3 \) ) sollevato da una spinta ascensionale pari a \( 7.12 \cdot 10^5 N \).

Quale e il volume del pallone? (trascura la massa dell’involucro rispetto alla massa di elio)

2        Soluzione

Per risolvere il problema si deve tenere in considerazione che la spinta netta verso l’alto è il risultato di una spinta che batte anche la forza peso del pallone. Da questa considerazione si può affermare che la spinta ascensionale netta non è uguale alla forza che si utilizzerebbe nella formula di Archimede. Infatti la forza da utilizzare come spinta di Archimede è più grande della forza ascensionale dichiarata dal problema.

\( F_{A r c}=F_{a s c}+m_{e l} g \)

In cui:

  • \( F_{A r c} \) è la forza di Archimede;
  • \( F_{a s c} \) è la forza ascensionale dichiarata dal problema;
  • \( m_{e l} \) è la massa del pallone pieno d’elio;
  • \( g \) è l’accelerazione gravitazionale a cui viene sottoposto il pallone pieno d’elio.

D’altra parte deve essere vero che, per il principio di Archimede:

\( F_{A r c}=\rho_{a} V_{e l} g \)

In cui:

  • \( V_{e l}\) è il volume del pallone d’elio richiesto dal problema;
  • \( \rho_{a} \) è la densità dell’aria ed è un dato del problema.

Quindi:

\( F_{a s c}+m_{e l} g=\rho_{a} V_{e l} g \)

Ma siccome la densità del pallone pieno d’elio è:

\( \rho_{e l}=\frac{m_{e l}}{V_{e l}} \)

Allora si può scrivere anche che:

\( F_{a s c}+\rho_{e l} V_{e l} g=\rho_{a} V_{e l} g \)

Ovvero:

\( V_{e l}=\frac{F_{a s c}}{g\left(\rho_{a}-\rho_{e l}\right)} \approx 6.54 \cdot 10^{4} m^{3} \)

Quindi il volume del pallone pieno d’elio è pari a circa \( 6.54 \cdot 10^{4} m^{3} \).

Pubblicato il

Come risolvere l’esercizio n.28 pag. G55 Matematica multimediale.blu 1

Reading Time: < 1 minute

L’esercizio è presente anche nei seguenti libri:

  • n.25 pag. G48 Matematica multimediale.verde 1
  • n.25 pag. G44 Matematica multimediale.bianco 1
  • n.28  pag.G49 Matematica multimediale.azzurro 1

1 Testo

Traccia due segmenti AB e CD che si intersecano nel punto M, che è il punto medio di entrambi. Dimostra che i triangoli AMC e BMD sono congruenti.

2 Prerequisiti

Per rispondere al quesito bisogna sapere:

  • il concetto di congruenza;
  • il primo criterio di congruenza;
  • il concetto di punto medio;
  • la distinzione tra ipotesi, dimostrazione e tesi.

3 Soluzione

3.1 Ipotesi e tesi

Ipotesi
\( AM\cong MB \)
\(CM\cong MD\)
Tesi
\(AMC\cong BMD \)

Di seguito viene mostrato graficamente il caso di cui è necessario fornire dimostrazione.

Figura 1. Illustrazione grafica del problema

3.2 Dimostrazione

Consideriamo i triangoli \(AMC\) e \(MBD\).

Essi hanno:

  • \(AM\cong MB\) per ipotesi
  • \(CM\cong MD\) per ipotesi
  • \(A\hat{M}C\cong B\hat{M}D\) perchè angoli opposti al vertice M

Dunque i due triangoli, avendo due lati e l’angolo tra essi compreso ordinatamente congruenti, sono congruenti, per il primo criterio di congruenza.

Quindi:

\(AMC\cong BMD \).

Come volevasi dimostrare.