Pubblicato il

Come risolvere esercizio n.32 pag.177 (Matematica.verde 3G)

Reading Time: 2 minutes

L’esercizio è presente anche nei seguenti libri:

  • esercizio 33 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 32  pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si trova il valore del parametro m della retta r_{AB} che passa per  due punti A e B , parallela ad un’altra retta r.

Inoltre si calcola il perimetro del triangolo formato dalla retta r_{AB} e un punto C sull’asse delle ascisse.

1         Testo

Determina per quale valore del parametro \( m \) la retta passante per i punti  \( A(m+1;2) \) e \( B(1;m) \) è parallela alla retta \( y=3x+1 \)Trova poi il perimetro del triangolo ABC con C punto di intersezione tra l’asse \( x \) e la retta \( y=x+1 \).

1          Soluzione

La retta passante per AB deve essere parallela alla retta  \( r: y=3x+1
\) con \( m_r=3\).

Per la condizione di parallelismo i coefficienti angolari delle due rette
devono essere uguali:

\(
m_{AB}=m_r \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (1) \)

Determiniamo il coefficiente angolare tra i due punti:

\( m_{AB}=\frac{y_B-y_A}{x_B-x_A}=\frac{m-2}{1-m-1}=\frac{m-2}{-m}=-\frac{m-2}{m} \)

Per la (1), deve essere:

\( -\frac{m-2}{m}=3\)

da cui

\( -(m-2)=3m\)

\( -m+2-3m=0\)

\( -4m=-2\)

\( m=\frac{2}{4}=\frac{1}{2}\)

quindi

\( m= \frac{1}{2}\)

Determiniamo le coordinate dei punti A e B, sostituendo il valore di \(
m=\frac{1}{2} \):

\( (m+1;2)\rightarrow\left(\frac{1}{2}+1 ; 2\right)\rightarrow A\left(\frac{3}{2}
; 2\right)\)

e

\( B(1;m)\rightarrow B\left(1;\frac{1}{2}\right)\)

Determiniamo il punto di intersezione tra l’asse \( x \) e la retta data \(
y=x+1 \).

Risolvendo il seguente sistema:

\( \left \{ \begin{matrix} y=x+1 \\ y=0 \end{matrix} \right. \)

da cui:

\( x+1=0\rightarrow x=-1 \)

otteniamo le coordinate del punto \( C(-1,0)\).

Utilizzando la formula distanza
tra due punti:

\( d=\sqrt{(x_2-x_1 )^2+(y_2-y_1 )^2}\)

calcoliamo i lati del triangolo:

\( AB=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(\frac{1}{2}-2\right)^2}=\sqrt{\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{10}{4}}=\frac{1}{2}\sqrt{10}\)

\( BC=\sqrt{\left(-1-1\right)^2+\left(0-\frac{1}{2}\right)^2}=\sqrt{4+\frac{1}{4}}=\sqrt{\frac{17}{4}}=\frac{1}{2}\sqrt{17}\)

\( AC=\sqrt{\left(1-\frac{3}{2}\right)^2+\left(0-2\right)^2}=\sqrt{\frac{25}{4}+4}=\sqrt{\frac{41}{4}}=\frac{1}{2}\sqrt{41}\)

Ora possiamo calcolare il perimetro del triangolo:

\( P=AB+BC+AC=\frac{1}{2}\sqrt{10}+\frac{1}{2}\sqrt{17}+\frac{1}{2}\sqrt{41}=\frac{1}{2}\left(\sqrt{10}+\sqrt{17}+\sqrt{41}\right)\)

 

Figura 1. Rappresentazione completa della situazione proposta dal problema. Vengono rappresentate le tre rette discusse in questo esercizio e il triangolo identificato dai tre punti A, B e C.
Pubblicato il

Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)

Reading Time: < 1 minute

Autore: Antonio Reno;

Revisore: Andrea Zedda

L’esercizio è presente anche nei seguenti libri:

  • esercizio 28 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 27 pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si calcola l’equazione della retta passante per l’altezza di un triangolo nel piano cartesiano ma anche come si trova la retta passante per un vertice del triangolo e parallela a un lato del triangolo stesso.

1 Testo

Dato il triangolo di vertici A(-2,4), B(4,3) e C(2,-2), determinare:

  1. l’equazione della retta passante per l’altezza relativa al lato AC;
  2. l’equazione della retta passante per A e parallela al lato BC.

2 Soluzione

2.1 Punto 1

Utilizzando la formula della retta passante per due punti:

\( \frac{y-y_{2}}{y_{1}-y_{2}}=\frac{x-x_{2}}{x_{1}-x_{2}} \)

Trovando la retta che passa per AC:

\( r_{A C}: \frac{y+2}{4+2}=\frac{x-2}{-2-2} \rightarrow \)

\( \frac{y+2}{6}=\frac{x-2}{-4} \rightarrow-4(y+2)=6(x-2) \rightarrow-4 y-8=6 x-12 \)

Quindi…

Pubblicato il

I punti Zeta e la probabilità di superare il limite

Reading Time: 2 minutes

Testo

La percentuale di metanolo in lotti di prodotto ha un limite massimo di specifica dello 0,15%. I dati registrati suggeriscono che le osservazioni sul metanolo possono essere caratterizzate da una distribuzione normale con una media dello \eta = 0.10 \% e una deviazione standard dello \sigma = 0.02 \%. Qual è la probabilità di superare le specifiche?

Continua a leggere I punti Zeta e la probabilità di superare il limite