Pubblicato il

Come trovare altezza relativa e equazione della retta parallela al lato di un triangolo

Testo

Dato il triangolo di vertici A(-2; 4), B(4; 3) e C(2; -2), determina:

a. l’equazione dell’altezza relativa al lato AC;

b. l’equazione della retta passante per A e parallela al lato BC;

Soluzione

Punto a.

Per trovare l’altezza relativa ad AC, sappiamo che è una retta perpendicolare ad AC e passante per il vertice opposto B.

Troviamo inizialmente il coefficiente angolare della retta AC:

\( m_{AC}={\frac{y_{C}- y_{A}}{ x_{C}-x_{A} }}={\frac{-2-4}{2-(-2)}}= {\frac{-3}{2}} \)

Sapendo che la condizione di perpendicolarità tra due rette, otteniamo poi il coefficente angolare della retta relativa AC:

\( m_{BH}={\frac{-1}{ m_{AC}}}={\frac{2}{3}} \)

Data la definizione della retta in forma esplicita \( y=mx+q \), sostituendo il coefficiente  \( m_{BH} \) e imponendo il passaggio per il vertice B(4,3):

\( 3= {\frac{2}{3}}*4+q \qquad q=1 \)

\( y= {\frac{2}{3}}x+{\frac{1}{3}} \)

In forma implicita diventa dunque:

\( 2x+3y+1=0 \)

Punto b.

Qualunque retta parallela al segmento BC avrà il suo stesso coefficiente angolare. Andando dunque a calcolarlo abbiamo:

\( m_{BC}={\frac{y_{C}- y_{B}}{ x_{C}-x_{B} }}={\frac{-2-3}{2-4}}= {\frac{5}{2}} \)

Data la definizione della retta in forma esplicita  \( y=mx+q \), sostituendo il coefficiente  \( m_{BC} \) e imponendo il passaggio per il punto A(-2; 4):

\( 4= {\frac{5}{2}}*(-2)+q \qquad q=9 \)

\( y= {\frac{5}{2}}x+9 \)

In forma implicita diventa dunque:

\( 5x-2y+18=0 \)

Rappresentazione delle rette ricavate con il triangolo discusso nel problema
Pubblicato il

Come risolvere esercizio n. 27 pag. 177 (Matematica.verde 3G)

Autore: Antonio Reno;

Revisore: Andrea Zedda

L’esercizio è presente anche nei seguenti libri:

  • esercizio 28 pag. 254 (Matematica.blu 2.0 volume 3 con tutor)
  • esercizio 27 pag. 215 (Matematica.rosso 3 con tutor)

In questo esempio di esercizio verrà mostrato come si calcola l’equazione della retta passante per l’altezza di un triangolo nel piano cartesiano ma anche come si trova la retta passante per un vertice del triangolo e parallela a un lato del triangolo stesso.

1 Testo

Dato il triangolo di vertici A(-2,4), B(4,3) e C(2,-2), determinare:

  1. l’equazione della retta passante per l’altezza relativa al lato AC;
  2. l’equazione della retta passante per A e parallela al lato BC.

2 Soluzione

2.1 Punto 1

Utilizzando la formula della retta passante per due punti:

\( \frac{y-y_{2}}{y_{1}-y_{2}}=\frac{x-x_{2}}{x_{1}-x_{2}} \)

Trovando la retta che passa per AC:

\( r_{A C}: \frac{y+2}{4+2}=\frac{x-2}{-2-2} \rightarrow \)

\( \frac{y+2}{6}=\frac{x-2}{-4} \rightarrow-4(y+2)=6(x-2) \rightarrow-4 y-8=6 x-12 \)

Quindi…